643 research outputs found

    Experimental Quantum Simulation of Entanglement in Many-body Systems

    Full text link
    We employ a nuclear magnetic resonance (NMR) quantum information processor to simulate the ground state of an XXZ spin chain and measure its NMR analog of entanglement, or pseudo-entanglement. The observed pseudo-entanglement for a small-size system already displays singularity, a signature which is qualitatively similar to that in the thermodynamical limit across quantum phase transitions, including an infinite-order critical point. The experimental results illustrate a successful approach to investigate quantum correlations in many-body systems using quantum simulators

    Multiqubit Spin

    Get PDF
    It is proposed that the state space of a quantum object with a complicated discrete spectrum can be used as a basis for multiqubit recording and processing of information in a quantum computer. As an example, nuclear spin 3/2 is considered. The possibilities of writing and reading two quantum bits of information, preparation of the initial state, implementation of the "rotation" and "controlled negation" operations, which are sufficient for constructing any algorithms, are demonstrated.Comment: 7 pages, PostScript, no figures; translation of Pis'ma Zh. Eksp. Teor. Fiz. 70, No. 1, pp. 59-63, 10 July 1999; (Submitted 29 April 1999; resubmitted 2 June 1999

    Quantum phase transition using quantum walks in an optical lattice

    Full text link
    We present an approach using quantum walks (QWs) to redistribute ultracold atoms in an optical lattice. Different density profiles of atoms can be obtained by exploiting the controllable properties of QWs, such as the variance and the probability distribution in position space using quantum coin parameters and engineered noise. The QW evolves the density profile of atoms in a superposition of position space resulting in a quadratic speedup of the process of quantum phase transition. We also discuss implementation in presently available setups of ultracold atoms in optical lattices.Comment: 7 pages, 8 figure

    NMR GHZ

    Full text link
    We describe the creation of a Greenberger-Horne-Zeilinger (GHZ) state of the form |000>+|111> (three maximally entangled quantum bits) using Nuclear Magnetic Resonance (NMR). We have successfully carried out the experiment using the proton and carbon spins of trichloroethylene, and confirmed the result using state tomography. We have thus extended the space of entangled quantum states explored systematically to three quantum bits, an essential step for quantum computation.Comment: 4 pages in RevTex, 3 figures, the paper is also avalaible at http://qso.lanl.gov/qc

    The Origin of Time Asymmetry

    Full text link
    It is argued that the observed Thermodynamic Arrow of Time must arise from the boundary conditions of the universe. We analyse the consequences of the no boundary proposal, the only reasonably complete set of boundary conditions that has been put forward. We study perturbations of a Friedmann model containing a massive scalar field but our results should be independent of the details of the matter content. We find that gravitational wave perturbations have an amplitude that remains in the linear regime at all times and is roughly time symmetric about the time of maximum expansion. Thus gravitational wave perturbations do not give rise to an Arrow of Time. However density perturbations behave very differently. They are small at one end of the universe's history, but grow larger and become non linear as the universe gets larger. Contrary to an earlier claim, the density perturbations do not get small again at the other end of the universe's history. They therefore give rise to a Thermodynamic Arrow of Time that points in a constant direction while the universe expands and contracts again. The Arrow of Time does not reverse at the point of maximum expansion. One has to appeal to the Weak Anthropic Principle to explain why we observe the Thermodynamic Arrow to agree with the Cosmological Arrow, the direction of time in which the universe is expanding.Comment: 41 pages, DAMTP R92/2

    Protecting Quantum Information Encoded in Decoherence Free States Against Exchange Errors

    Full text link
    The exchange interaction between identical qubits in a quantum information processor gives rise to unitary two-qubit errors. It is shown here that decoherence free subspaces (DFSs) for collective decoherence undergo Pauli errors under exchange, which however do not take the decoherence free states outside of the DFS. In order to protect DFSs against these errors it is sufficient to employ a recently proposed concatenated DFS-quantum error correcting code scheme [D.A. Lidar, D. Bacon and K.B. Whaley, Phys. Rev. Lett. {\bf 82}, 4556 (1999)].Comment: 7 pages, no figures. Discussion in section V.A. significantly expanded. Several small changes. Two authors adde

    Characterizing heralded single-photon sources with imperfect measurement devices

    Full text link
    Any characterization of a single-photon source is not complete without specifying its second-order degree of coherence, i.e., its g(2)g^{(2)} function. An accurate measurement of such coherence functions commonly requires high-precision single-photon detectors, in whose absence, only time-averaged measurements are possible. It is not clear, however, how the resulting time-averaged quantities can be used to properly characterize the source. In this paper, we investigate this issue for a heralded source of single photons that relies on continuous-wave parametric down-conversion. By accounting for major shortcomings of the source and the detectors--i.e., the multiple-photon emissions of the source, the time resolution of photodetectors, and our chosen width of coincidence window--our theory enables us to infer the true source properties from imperfect measurements. Our theoretical results are corroborated by an experimental demonstration using a PPKTP crystal pumped by a blue laser, that results in a single-photon generation rate about 1.2 millions per second per milliwatt of pump power. This work takes an important step toward the standardization of such heralded single-photon sources.Comment: 18 pages, 9 figures; corrected Eq. (11) and the description follows Eq. (22

    Experimental Implementation of Discrete Time Quantum Random Walk on an NMR Quantum Information Processor

    Full text link
    We present an experimental implementation of the coined discrete time quantum walk on a square using a three qubit liquid state nuclear magnetic resonance (NMR) quantum information processor (QIP). Contrary to its classical counterpart, we observe complete interference after certain steps and a periodicity in the evolution. Complete state tomography has been performed for each of the eight steps making a full period. The results have extremely high fidelity with the expected states and show clearly the effects of quantum interference in the walk. We also show and discuss the importance of choosing a molecule with a natural Hamiltonian well suited to NMR QIP by implementing the same algorithm on a second molecule. Finally, we show experimentally that decoherence after each step makes the statistics of the quantum walk tend to that of the classical random walk.Comment: revtex4, 8 pages, 6 figures, submitted to PR
    • …
    corecore