41 research outputs found

    First operation of a liquid Argon TPC embedded in a magnetic field

    Full text link
    We have operated for the first time a liquid Argon TPC immersed in a magnetic field up to 0.55 T. We show that the imaging properties of the detector are not affected by the presence of the magnetic field. The magnetic bending of the ionizing particle allows to discriminate their charge and estimate their momentum. These figures were up to now not accessible in the non-magnetized liquid Argon TPC.Comment: 9 pages, 3 figure

    Test of a Liquid Argon TPC in a magnetic field and investigation of high temperature superconductors in liquid argon and nitrogen

    Full text link
    Tests with cosmic ray muons of a small liquid argon time projection chamber (LAr TPC) in a magnetic field of 0.55 T are described. No effect of the magnetic field on the imaging properties were observed. In view of a future large, magnetized LAr TPC, we investigated the possibility to operate a high temperature superconducting (HTS) solenoid directly in the LAr of the detector. The critical current IcI_c of HTS cables in an external magnetic field was measured at liquid nitrogen and liquid argon temperatures and a small prototype HTS solenoid was built and tested.Comment: 5 pages, 5 figures, to appear in Proc. of 1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba (Japan), March 201

    Feasibility of high-voltage systems for a very long drift in liquid argon TPCs

    Full text link
    Designs of high-voltage (HV) systems for creating a drift electric field in liquid argon TPCs are reviewed. In ongoing experiments systems capable of approx. 100 kV are realised for a drift field of 0.5-1 kV/cm over a length of up to 1.5 m. Two of them having different approaches are presented: (1) the ICARUS-T600 detector having a system consisting of an external power supply, HV feedthroughs and resistive voltage degraders and (2) the ArDM-1t detector having a cryogenic Greinacher HV multiplier inside the liquid argon volume. For a giant scale liquid argon TPC, a system providing 2 MV may be required to attain a drift length of approx. 20 m. Feasibility of such a system is evaluated by extrapolating the existing designs.Comment: 8 pages, 13 figures, to appear in Proc. of 1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba (Japan), March 201

    First results from a Liquid Argon Time Projection Chamber in a Magnetic Field

    Full text link
    A small liquid argon Time Projection Chamber (LAr TPC) was operated for the first time in a magnetic field of 0.55 Tesla. The imaging properties of the detector were not affected by the magnetic field. In a test run with cosmic rays a sample of through going and stopping muons was collected. The chamber with the readout electronics and the experimental setup are described. A few selected events were reconstructed and analyzed and the results are presented. The magnetic bending of the charged particle tracks allows the determination of the electric charge and the momentum, even for particles not fully contained in the drift chamber. These features are e.g. required for future neutrino detectors at a neutrino factory.Comment: 35 pages, 25 figures, version with full resolution figures at available at http://neutrino.ethz.ch/GLACIER

    Direct WIMP identification: Physics performance of a segmented noble-liquid target immersed in a Gd-doped water veto

    Full text link
    We evaluate background rejection capabilities and physics performance of a detector composed of two diverse elements: a sensitive target (filled with one or two species of liquefied noble gasses) and an active veto (made of Gd-doped ultra-pure water). A GEANT4 simulation shows that for a direct WIMP search, this device can reduce the neutron background to O(1) event per year per tonne of material. Our calculation shows that an exposure of one tonne ×\times year will suffice to exclude spin-independent WIMP-nucleon cross sections ranging from 10−910^{-9} pb to 10−1010^{-10} pb.Comment: 17 pages, 5 figures. Version accepted for publication in JCA

    What it takes to measure a fundamental difference between dark matter and baryons: the halo velocity anisotropy

    Full text link
    Numerous ongoing experiments aim at detecting WIMP dark matter particles from the galactic halo directly through WIMP-nucleon interactions. Once such a detection is established a confirmation of the galactic origin of the signal is needed. This requires a direction-sensitive detector. We show that such a detector can measure the velocity anisotropy beta of the galactic halo. Cosmological N-body simulations predict the dark matter anisotropy to be nonzero, beta~0.2. Baryonic matter has beta=0 and therefore a detection of a nonzero beta would be strong proof of the fundamental difference between dark and baryonic matter. We estimate the sensitivity for various detector configurations using Monte Carlo methods and we show that the strongest signal is found in the relatively few high recoil energy events. Measuring beta to the precision of ~0.03 will require detecting more than 10^4 WIMP events with nuclear recoil energies greater than 100 keV for a WIMP mass of 100 GeV and a 32S target. This number corresponds to ~10^6 events at all energies. We discuss variations with respect to input parameters and we show that our method is robust to the presence of backgrounds and discuss the possible improved sensitivity for an energy-sensitive detector.Comment: 15 pages, 8 figures, accepted by JCAP. Matches accepted versio
    corecore