180 research outputs found

    Metabolic acidosis may be as protective as hypercapnic acidosis in an ex-vivo model of severe ventilator-induced lung injury: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is mounting experimental evidence that hypercapnic acidosis protects against lung injury. However, it is unclear if acidosis <it>per se </it>rather than hypercapnia is responsible for this beneficial effect. Therefore, we sought to evaluate the effects of hypercapnic (respiratory) versus normocapnic (metabolic) acidosis in an ex vivo model of ventilator-induced lung injury (VILI).</p> <p>Methods</p> <p>Sixty New Zealand white rabbit ventilated and perfused heart-lung preparations were used. Six study groups were evaluated. Respiratory acidosis (RA), metabolic acidosis (MA) and normocapnic-normoxic (Control - C) groups were randomized into high and low peak inspiratory pressures, respectively. Each preparation was ventilated for 1 hour according to a standardized ventilation protocol. Lung injury was evaluated by means of pulmonary edema formation (weight gain), changes in ultrafiltration coefficient, mean pulmonary artery pressure changes as well as histological alterations.</p> <p>Results</p> <p>HPC group gained significantly greater weight than HPMA, HPRA and all three LP groups (P = 0.024), while no difference was observed between HPMA and HPRA groups regarding weight gain. Neither group differ on ultrafiltration coefficient. HPMA group experienced greater increase in the mean pulmonary artery pressure at 20 min (P = 0.0276) and 40 min (P = 0.0012) compared with all other groups. Histology scores were significantly greater in HP vs. LP groups (p < 0.001).</p> <p>Conclusions</p> <p>In our experimental VILI model both metabolic acidosis and hypercapnic acidosis attenuated VILI-induced pulmonary edema implying a mechanism other than possible synergistic effects of acidosis with CO2 for VILI attenuation.</p

    Determination of the efficacy and side-effect profile of lower doses of intrathecal morphine in patients undergoing total knee arthroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intrathecal (IT) morphine provides excellent post-operative analgesia, but causes multiple side effects including nausea and vomiting (PONV), pruritus and respiratory depression, particularly at higher doses. The lowest effective dose of spinal morphine in patients undergoing total knee arthroplasty is not known.</p> <p>Methods</p> <p>We evaluated the analgesic efficacy and side effect profile of 100 – 300 μg IT morphine in patients undergoing elective total knee replacement in this prospective, randomized, controlled, double-blind study. Sixty patients over the age of 60 undergoing elective knee arthroplasty were enrolled. Patients were randomized to receive spinal anaesthesia with 15 mg Bupivacaine and IT morphine in three groups: (i) 100 μg; (ii) 200 μg; and (iii) 300 μg.</p> <p>Results</p> <p>Both 200 μg and 300 μg IT morphine provided comparable levels of postoperative analgesia. However, patients that received 100 μg had greater pain postoperatively, with higher pain scores and a greater requirement for supplemental morphine. There were no differences between groups with regard to PONV, pruritus, sedation, respiratory depression or urinary retention.</p> <p>Conclusion</p> <p>Both 200 μg and 300 μg provided comparable postoperative analgesia, which was superior to that provided by 100 μg IT morphine in patients undergoing total knee arthroplasty. Based on these findings, we recommend that 200 μg IT morphine be used in these patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier NCT00695045</p

    Mechanical ventilation: lessons from the ARDSNet trial

    Get PDF
    The acute respiratory distress syndrome (ARDS) is an inflammatory disease of the lungs characterized clinically by bilateral pulmonary infiltrates, decreased pulmonary compliance and hypoxemia. Although supportive care for ARDS seems to have improved over the past few decades, few studies have shown that any treatment can decrease mortality for this deadly syndrome. In the 4 May 2000 issue of New England Journal of Medicine, the results of an NIH-sponsored trial were presented; they demonstrated that the use of a ventilatory strategy that minimizes ventilator-induced lung injury leads to a 22% decrease in mortality. The implications of this study with respect to clinical practice, further ARDS studies and clinical research in the critical care setting are discussed

    Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertonic saline (HTS) reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury.</p> <p>Methods</p> <p>Adult male Sprague Dawley rats were used in all experiments. <b><it>Series 1 </it></b>examined the potential for HTS to reduce the severity of evolving oleic acid (OA) induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12) or hypertonic saline (HTS, n = 12), and the extent of lung injury assessed after 6 hours. <b><it>Series 2 </it></b>examined the potential for HTS to enhance the resolution of oleic acid (OA) induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6) or hypertonic saline (HTS, n = 6), and the extent of lung injury assessed after 6 hours.</p> <p>Results</p> <p>In <b><it>Series I</it></b>, HTS significantly reduced bronchoalveolar lavage (BAL) neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 10<sup>3</sup> cells.ml<sup>-1</sup>]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in <b><it>Series 2</it></b>, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 10<sup>3</sup> cells.ml<sup>-1</sup>], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml<sup>-1</sup>].</p> <p>Conclusion</p> <p>These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.</p

    Towards a biological definition of ARDS: are treatable traits the solution?

    Get PDF
    The pathophysiology of acute respiratory distress syndrome (ARDS) includes the accumulation of protein-rich pulmonary edema in the air spaces and interstitial areas of the lung, variable degrees of epithelial injury, variable degrees of endothelial barrier disruption, transmigration of leukocytes, alongside impaired fluid and ion clearance. These pathophysiological features are different between patients contributing to substantial biological heterogeneity. In this context, it is perhaps unsurprising that a wide range of pharmacological interventions targeting these pathophysiological processes have failed to improve patient outcomes. In this manuscript, our goal is to provide a narrative summary of the potential methods to capture the underlying biological heterogeneity of ARDS and discuss how this information could inform future ARDS redefinitions. We discuss what biological tests are available to identify patients with any of the following predominant biological patterns: (1) epithelial and/or endothelial injury, (2) protein rich pulmonary edema and (3) systemic or within lung inflammatory responses

    Very Low Tidal Volume Ventilation with Associated Hypercapnia - Effects on Lung Injury in a Model for Acute Respiratory Distress Syndrome

    Get PDF
    BACKGROUND: Ventilation using low tidal volumes with permission of hypercapnia is recommended to protect the lung in acute respiratory distress syndrome. However, the most lung protective tidal volume in association with hypercapnia is unknown. The aim of this study was to assess the effects of different tidal volumes with associated hypercapnia on lung injury and gas exchange in a model for acute respiratory distress syndrome. METHODOLOGY/PRINCIPAL FINDINGS: In this randomized controlled experiment sixty-four surfactant-depleted rabbits were exposed to 6 hours of mechanical ventilation with the following targets: Group 1: tidal volume = 8-10 ml/kg/PaCO(2) = 40 mm Hg; Group 2: tidal volume = 4-5 ml/kg/PaCO(2) = 80 mm Hg; Group 3: tidal volume = 3-4 ml/kg/PaCO(2) = 120 mm Hg; Group 4: tidal volume = 2-3 ml/kg/PaCO(2) = 160 mm Hg. Decreased wet-dry weight ratios of the lungs, lower histological lung injury scores and higher PaO(2) were found in all low tidal volume/hypercapnia groups (group 2, 3, 4) as compared to the group with conventional tidal volume/normocapnia (group 1). The reduction of the tidal volume below 4-5 ml/kg did not enhance lung protection. However, oxygenation and lung protection were maintained at extremely low tidal volumes in association with very severe hypercapnia and no adverse hemodynamic effects were observed with this strategy. CONCLUSION: Ventilation with low tidal volumes and associated hypercapnia was lung protective. A tidal volume below 4-5 ml/kg/PaCO(2) 80 mm Hg with concomitant more severe hypercapnic acidosis did not increase lung protection in this surfactant deficiency model. However, even at extremely low tidal volumes in association with severe hypercapnia lung protection and oxygenation were maintained

    High frequency oscillatory ventilation and prone positioning in a porcine model of lavage-induced acute lung injury

    Get PDF
    BACKGROUND: This animal study was conducted to assess the combined effects of high frequency oscillatory ventilation (HFOV) and prone positioning on pulmonary gas exchange and hemodynamics. METHODS: Saline lung lavage was performed in 14 healthy pigs (54 ± 3.1 kg, mean ± SD) until the arterial oxygen partial pressure (PaO(2)) decreased to 55 ± 7 mmHg. The animals were ventilated in the pressure controlled mode (PCV) with a positive endexpiratory pressure (PEEP) of 5 cmH(2)O and a tidal volume (V(T)) of 6 ml/kg body weight. After a stabilisation period of 60 minutes, the animals were randomly assigned to 2 groups. Group 1: HFOV in supine position; group 2: HFOV in prone position. After evaluation of prone positioning in group 2, the mean airway pressure (P(mean)) was increased by 3 cmH(2)O from 16 to 34 cmH(2)O every 20 minutes in both groups accompanied by measurements of respiratory and hemodynamic variables. Finally all animals were ventilated supine with PCV, PEEP = 5 cm H(2)O, V(T )= 6 ml/kg. RESULTS: Combination of HFOV with prone positioning improves oxygenation and results in normalisation of cardiac output and considerable reduction of pulmonary shunt fraction at a significant (p < 0.05) lower P(mean )than HFOV and supine positioning. CONCLUSION: If ventilator induced lung injury is ameliorated by a lower P(mean), a combined treatment approach using HFOV and prone positioning might result in further lung protection
    • …
    corecore