10 research outputs found

    Effect of ABCC2 (MRP2) Transport Function on Erythromycin Metabolism

    Full text link
    The macrolide antiobiotic erythromycin undergoes extensive hepatic metabolism and is commonly used as a probe for CYP3A4 activity. Using a transporter screen, erythromycin was identified as a substrate for the transporter ABCC2 (MRP2) and its murine ortholog, Abcc2. Since these proteins are highly expressed on the biliary surface of hepatocytes, we hypothesized that impaired Abcc2 function may influence the rate of hepatobiliary excretion and thereby enhance erythromycin metabolism. Using Abcc2-knockout mice, we found that erythromycin metabolism was significantly increased, whereas murine Cyp3a protein expression and microsomal Cyp3a activity were not affected by Abcc2 deficiency. Next, in a cohort of 108 human subjects, we observed that homozygosity for a common reduced-function variant in ABCC2 (rs717620) was also linked with increased erythromycin metabolism, but was not correlated with the clearance of midazolam. These results suggest that impaired ABCC2 function can alter erythromycin metabolism independently of changes in CYP3A4 activity

    Genetic variation in the Estonian population : pharmacogenomics study of adverse drug effects using electronic health records

    Full text link
    Pharmacogenomics aims to tailor pharmacological treatment to each individual by considering associations between genetic polymorphisms and adverse drug effects (ADEs). With technological advances, pharmacogenomic research has evolved from candidate gene analyses to genome-wide association studies. Here, we integrate deep whole-genome sequencing (WGS) information with drug prescription and ADE data from Estonian electronic health record (EHR) databases to evaluate genome- and pharmacome-wide associations on an unprecedented scale. We leveraged WGS data of 2240 Estonian Biobank participants and imputed all single-nucleotide variants (SNVs) with allele counts over 2 for 13,986 genotyped participants. Overall, we identified 41 (10 novel) loss-of-function and 567 (134 novel) missense variants in 64 very important pharmacogenes. The majority of the detected variants were very rare with frequencies below 0.05%, and 6 of the novel lossof-function and 99 of the missense variants were only detected as single alleles (allele count = 1). We also validated documented pharmacogenetic associations and detected new independent variants in known gene-drug pairs. Specifically, we found that CTNNA3 was associated with myositis and myopathies among individuals taking nonsteroidal anti-inflammatory oxicams and replicated this finding in an extended cohort of 706 individuals. These findings illustrate that population-based WGS-coupled EHRs are a useful tool for biomarker discovery
    corecore