3 research outputs found

    Cell activation-based screening of natively paired human T cell receptor repertoires

    Get PDF
    Adoptive immune therapies based on the transfer of antigen-specific T cells have been used successfully to treat various cancers and viral infections, but improved techniques are needed to identify optimally protective human T cell receptors (TCRs). Here we present a high-throughput approach to the identification of natively paired human TCRα and TCRβ (TCRα:β) genes encoding heterodimeric TCRs that recognize specific peptide antigens bound to major histocompatibility complex molecules (pMHCs). We first captured and cloned TCRα:β genes from individual cells, ensuring fidelity using a suppression PCR. We then screened TCRα:β libraries expressed in an immortalized cell line using peptide-pulsed antigen-presenting cells and sequenced activated clones to identify the cognate TCRs. Our results validated an experimental pipeline that allows large-scale repertoire datasets to be annotated with functional specificity information, facilitating the discovery of therapeutically relevant TCRs

    Immortalization and functional screening of natively paired human T cell receptor repertoires

    Get PDF
    Abstract Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.</jats:p

    Immortalization and functional screening of natively paired human T cell receptor repertoires

    Get PDF
    Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs
    corecore