124 research outputs found

    A Sensitive Tg Assay or rhTSH Stimulated Tg: What's the Best in the Long-Term Follow-Up of Patients with Differentiated Thyroid Carcinoma?

    Get PDF
    Sensitivity of thyroglobulin (Tg) measurement in the follow-up of differentiated thyroid carcinoma (DTC) can be optimized by using a sensitive Tg assay and rhTSH stimulation. We evaluated the diagnostic yield of a sensitive Tg assay and rhTSH stimulated Tg in the detection of recurrences in the follow-up of DTC. Additionally the value of imaging techniques for the localization of recurrences was evaluated. We included 121 disease free patients in long-term follow-up for DTC (median 10 years, range 1–34). Tg during thyroid hormone suppression therapy (Tg-on) and rhTSH stimulated Tg were measured with a sensitive Tg assay. Patients with rhTSH stimulated Tg ≥1.0 ng/ml underwent imaging with neck ultrasound, FDG-PET and post therapy 131I WBS. Sensitive Tg measurement resulted in 3 patients with Tg-on ≥1.0 ng/ml, recurrence could be localized in 2 of them. RhTSH stimulation resulted in Tg ≥1.0 ng/ml in another 17 of 118 patients. Recurrence could be localized in only 1 additional patient (1 out of 118 patients). Recurrence was localized by neck ultrasound in 1 of 3, by FDG-PET in 2 of 3 and by post therapy 131I WBS in 2 of 3 patients. In the detection of recurrences in DTC, rhTSH stimulation had very limited additional value in comparison to Tg-on measurement with a sensitive Tg assay. We consider this too low to justify rhTSH stimulation in all patients during long-term follow up. Neck ultrasound, FDG-PET and post therapy 131I WBS showed complementary value in localization of disease, but were only positive in a small fracture of all procedures

    Association between the Interleukin-6 Promoter Polymorphism −174G/C and Serum Lipoprotein(a) Concentrations in Humans

    Get PDF
    Background: Lipoprotein(a) [Lp(a)] is an independent risk factor for cardiovascular disease. The interleukin-6 (IL-6) receptor antagonist tocilizumab has been shown to lower serum Lp(a) concentrations. We investigated whether the IL-6 single nucleotide polymorphism 2174G/C is associated with baseline serum Lp(a) concentrations. Methodology/Principal Findings: We divided 2321 subjects from the Lipid Analytic Cologne (LIANCO) cohort into 2 groups, the ones with substantially elevated Lp(a), defined as concentrations $60 mg/dl (n = 510), and the ones with Lp(a),60 mg/ dl (n = 1811). The association with the genotypes GG (33.7%), GC (50.75%) and CC (15.55%) was investigated. The GC and the CC genotype were associated with a significantly increased odds ratio of having substantially elevated Lp(a) concentrations (OR = 1.3, 95 % CI 1.04 to 1.63, P = 0.02 and OR = 1.44, 95 % CI 1.06 to 1.93, P = 0.018). These associations remained significant after adjusting for age, sex, smoking behavior, body mass index, serum lipoproteins, hypertension and diabetes. Of these covariates, only LDL cholesterol was significantly and independently associated with elevated Lp(a) concentrations. Conclusions/Significance: The IL-6 single nucleotide polymorphism 2174G/C is associated with increased odds of having elevated Lp(a). Whether this association plays a role in the Lp(a)-lowering effects of IL-6 receptor antagonists remains to b

    Differences between Human Plasma and Serum Metabolite Profiles

    Get PDF
    BACKGROUND: Human plasma and serum are widely used matrices in clinical and biological studies. However, different collecting procedures and the coagulation cascade influence concentrations of both proteins and metabolites in these matrices. The effects on metabolite concentration profiles have not been fully characterized. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the concentrations of 163 metabolites in plasma and serum samples collected simultaneously from 377 fasting individuals. To ensure data quality, 41 metabolites with low measurement stability were excluded from further analysis. In addition, plasma and corresponding serum samples from 83 individuals were re-measured in the same plates and mean correlation coefficients (r) of all metabolites between the duplicates were 0.83 and 0.80 in plasma and serum, respectively, indicating significantly better stability of plasma compared to serum (p = 0.01). Metabolite profiles from plasma and serum were clearly distinct with 104 metabolites showing significantly higher concentrations in serum. In particular, 9 metabolites showed relative concentration differences larger than 20%. Despite differences in absolute concentration between the two matrices, for most metabolites the overall correlation was high (mean r = 0.81±0.10), which reflects a proportional change in concentration. Furthermore, when two groups of individuals with different phenotypes were compared with each other using both matrices, more metabolites with significantly different concentrations could be identified in serum than in plasma. For example, when 51 type 2 diabetes (T2D) patients were compared with 326 non-T2D individuals, 15 more significantly different metabolites were found in serum, in addition to the 25 common to both matrices. CONCLUSIONS/SIGNIFICANCE: Our study shows that reproducibility was good in both plasma and serum, and better in plasma. Furthermore, as long as the same blood preparation procedure is used, either matrix should generate similar results in clinical and biological studies. The higher metabolite concentrations in serum, however, make it possible to provide more sensitive results in biomarker detection

    Clinical practice guidelines for the management of hypothyroidism

    Full text link

    CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease

    No full text
    • …
    corecore