35 research outputs found

    Hyperfine-Induced Decay in Triple Quantum Dots

    Full text link
    We analyze the effects of hyperfine interactions on coherent control experiments in triple quantum dots. By exploiting Hamiltonian symmetries and the SU(3) structure of the triple-dot system under pseudo-exchange and longitudinal hyperfine couplings, we provide analytic formulae for the hyperfine decay of triple-dot Rabi and dephasing experiments.Comment: 5 pages, 2 figure

    System Design for a Long-Line Quantum Repeater

    Full text link
    We present a new control algorithm and system design for a network of quantum repeaters, and outline the end-to-end protocol architecture. Such a network will create long-distance quantum states, supporting quantum key distribution as well as distributed quantum computation. Quantum repeaters improve the reduction of quantum-communication throughput with distance from exponential to polynomial. Because a quantum state cannot be copied, a quantum repeater is not a signal amplifier, but rather executes algorithms for quantum teleportation in conjunction with a specialized type of quantum error correction called purification to raise the fidelity of the quantum states. We introduce our banded purification scheme, which is especially effective when the fidelity of coupled qubits is low, improving the prospects for experimental realization of such systems. The resulting throughput is calculated via detailed simulations of a long line composed of shorter hops. Our algorithmic improvements increase throughput by a factor of up to fifty compared to earlier approaches, for a broad range of physical characteristics.Comment: 12 pages, 13 figures. v2 includes one new graph, modest corrections to some others, and significantly improved presentation. to appear in IEEE/ACM Transactions on Networkin

    Quantum computers based on electron spins controlled by ultra-fast, off-resonant, single optical pulses

    Get PDF
    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broad-band optical pulses to rotate electron spins and provide the clock signal to the system. Non-local two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.Comment: 4 pages, 4 figures, introduction is clarified, the section on two-qubit gates was expanded and much more detail about gate fidelities is given, figures were modified, one figure replaced with a figure showing gate fidelities for relevant parameter
    corecore