469 research outputs found

    Interactions climat-calotte durant la greenhouse Crétacé-Paléogène (120-34 Ma) : influence de la paléogéographie et du CO2 atmosphérique

    Get PDF
    On geological timescales, global climate proxies indicate that variations of large magnitude occur between the Cretaceous and the Cenozoic. On the long term, these variations are mostly determined by the equilibrium between the greenhouse gases composition of the atmosphere, primarily the CO2, and continental weathering set up by the spatial location of Earth’s landmasses. Here, the links between paleogeography and CO2 are looked upon in a climate-ice sheet interactions framework during a greenhouse period of Earth history (120 – 34 Ma). A suite of models involving both coupled and ice sheet models have been used to demonstrate that paleogeographic reorganizations have regulated the presence of ice over Antarctica during the Cretaceous. In a second time and using a similar setup, a new method for climate-ice sheet coupling have been developed and applied to the Eocene-Oligocene (EO) glaciation to yield a new scenario of ice evolution, in good agreement with data. Two feedbacks related to this glaciation and the coeval atmospheric CO2 fall are investigated. First, it is shown that the EO glaciation generates an intensification of the Antarctic Circumpolar Current. Second, within a data-model study demonstrating active Asian monsoons as old as the mid-Eocene, it is shown that the climatic change at the end of the Eocene is responsible for a reduction in the intensity of the Asian monsoon. Finally, with the aim of analysing the effect of paleogeographic changes on marine biogeochemistry during the Cenozoic, sensitivity tests to Drake Passage and Panama Seaway have been carried out.Les enregistrements climatiques globaux à l’échelle géologique entre le Crétacé et le début du Cénozoïque indiquent des variations de grande amplitude. Sur le long terme, celles-ci sont déterminées par l’équilibre entre la composition atmosphérique en gaz à effet de serre, principalement le CO2, issus du dégazage volcanique et l’altération continentale, modulée par les mouvements tectoniques des continents. Dans cette thèse, les liens entre paléogéographie et CO2 ont été étudiés dans le contexte des interactions entre climat et calottes de glace au cours d’un intervalle de temps dit de « greenhouse », entre 120 et 34 Ma. L’utilisation d’une suite de modèles impliquant un modèle couplé moyenne résolution, un modèle atmosphérique haute résolution et un modèle de calotte de glace, a permis de montrer que les changements paléogéographiques survenant au Crétacé ont régulé la présence de glace en Antarctique. Dans un second temps, une nouvelle méthode de couplage climat-calotte a été développée pour étudier la glaciation Eocène-Oligocène. Ces développements ont permis de reconstruire une évolution fidèle de celle-ci, en bon accord avec les données. Deux rétroactions liées à cette glaciation et à la chute concomitante du CO2 atmosphérique sont étudiées. En premier lieu, l’impact de la glaciation sur le Courant Circumpolaire Antarctique est abordé, montrant que celle-ci génère une intensification de ce courant. Ensuite, au sein d’une étude mêlant données et modèles pour documenter la présence de moussons en Asie dès l’Eocène moyen, il est montré que le changement climatique de la fin de l’Eocène induit une baisse d’intensité de la mousson asiatique. Enfin, dans la perspective d’analyser les conséquences des changements paléogéographiques du Cénozoïque sur la biogéochimie marine, des tests de sensibilité aux passages océaniques de Panama et de Drake ont été réalisés

    Rather First in a Village than Second in Rome? The Effect of Students' Class Rank in Primary School on Subsequent Academic Achievements

    Full text link
    Using panel data on Italian students from 2013 to 2019, we compare the effect of a student's class rank to the effect of class quality in primary school on subsequent academic outcomes. We propose a new strategy to identify the impact of rank while controlling for peer effects, by leveraging grades on class exams to construct the rank, and grades on national standardized tests to control for students' ability. Ranking first in primary school compared to last results in an improvement of 8.1 percentiles in the national standardized test grade distribution in middle school and 7.6 percentiles in high school. Despite the sizable impact of rank, our analysis highlights that a one standard deviation increase in class quality is five-fold greater than a similar increase in rank. Finally, using an extensive student survey, we establish that the rank effect is channeled through sorting into better high schools and psychological mechanisms

    A Tethered Bilayer Assembled on Top of Immobilized Calmodulin to Mimic Cellular Compartmentalization

    Get PDF
    International audienceBACKGROUND: Biomimetic membrane models tethered on solid supports are important tools for membrane protein biochemistry and biotechnology. The supported membrane systems described up to now are composed of a lipid bilayer tethered or not to a surface separating two compartments: a "trans" side, one to a few nanometer thick, located between the supporting surface and the membrane; and a "cis" side, above the synthetic membrane, exposed to the bulk medium. We describe here a novel biomimetic design composed of a tethered bilayer membrane that is assembled over a surface derivatized with a specific intracellular protein marker. This multilayered biomimetic assembly exhibits the fundamental characteristics of an authentic biological membrane in creating a continuous yet fluid phospholipidic barrier between two distinct compartments: a "cis" side corresponding to the extracellular milieu and a "trans" side marked by a key cytosolic signaling protein, calmodulin. METHODOLOGY/PRINCIPAL FINDINGS: We established and validated the experimental conditions to construct a multilayered structure consisting in a planar tethered bilayer assembled over a surface derivatized with calmodulin. We demonstrated the following: (i) the grafted calmodulin molecules (in trans side) were fully functional in binding and activating a calmodulin-dependent enzyme, the adenylate cyclase from Bordetella pertussis; and (ii) the assembled bilayer formed a continuous, protein-impermeable boundary that fully separated the underlying calmodulin (trans side) from the above medium (cis side). CONCLUSIONS: The simplicity and robustness of the tethered bilayer structure described here should facilitate the elaboration of biomimetic membrane models incorporating membrane embedded proteins and key cytoplasmic constituents. Such biomimetic structures will also be an attractive tool to study translocation across biological membranes of proteins or other macromolecules

    Changes in the high latitude Southern Hemisphere through the Eocene-Oligocene Transition:a model-data comparison

    Get PDF
    International audienceAbstract. The global and regional climate changed dramatically with the expansion of the Antarctic Ice Sheet at the Eocene–Oligocene transition (EOT). These large-scale changes are generally linked to declining atmospheric pCO2 levels and/or changes in Southern Ocean gateways such as the Drake Passage around this time. To better understand the Southern Hemisphere regional climatic changes and the impact of glaciation on the Earth's oceans and atmosphere at the EOT, we compiled a database of 10 ocean and 4 land-surface temperature reconstructions from a range of proxy records and compared this with a series of fully coupled, low-resolution climate model simulations from two models (HadCM3BL and FOAM). Regional patterns in the proxy records of temperature show that cooling across the EOT was less at high latitudes and greater at mid-latitudes. While certain climate model simulations show moderate–good performance at recreating the temperature patterns shown in the data before and after the EOT, in general the model simulations do not capture the absolute latitudinal temperature gradient shown by the data, being too cold, particularly at high latitudes. When taking into account the absolute temperature before and after the EOT, as well as the change in temperature across it, simulations with a closed Drake Passage before and after the EOT or with an opening of the Drake Passage across the EOT perform poorly, whereas simulations with a drop in atmospheric pCO2 in combination with ice growth generally perform better. This provides further support for previous research that changes in atmospheric pCO2 are more likely to have been the driver of the EOT climatic changes, as opposed to the opening of the Drake Passage

    The Adenylate Cyclase Toxins of Bacillus anthracis and Bordetella pertussis Promote Th2 Cell Development by Shaping T Cell Antigen Receptor Signaling

    Get PDF
    The adjuvanticity of bacterial adenylate cyclase toxins has been ascribed to their capacity, largely mediated by cAMP, to modulate APC activation, resulting in the expression of Th2–driving cytokines. On the other hand, cAMP has been demonstrated to induce a Th2 bias when present during T cell priming, suggesting that bacterial cAMP elevating toxins may directly affect the Th1/Th2 balance. Here we have investigated the effects on human CD4+ T cell differentiation of two adenylate cyclase toxins, Bacillus anthracis edema toxin (ET) and Bordetella pertussis CyaA, which differ in structure, mode of cell entry, and subcellular localization. We show that low concentrations of ET and CyaA, but not of their genetically detoxified adenylate cyclase defective counterparts, potently promote Th2 cell differentiation by inducing expression of the master Th2 transcription factors, c-maf and GATA-3. We also present evidence that the Th2–polarizing concentrations of ET and CyaA selectively inhibit TCR–dependent activation of Akt1, which is required for Th1 cell differentiation, while enhancing the activation of two TCR–signaling mediators, Vav1 and p38, implicated in Th2 cell differentiation. This is at variance from the immunosuppressive toxin concentrations, which interfere with the earliest step in TCR signaling, activation of the tyrosine kinase Lck, resulting in impaired CD3ζ phosphorylation and inhibition of TCR coupling to ZAP-70 and Erk activation. These results demonstrate that, notwithstanding their differences in their intracellular localization, which result in focalized cAMP production, both toxins directly affect the Th1/Th2 balance by interfering with the same steps in TCR signaling, and suggest that their adjuvanticity is likely to result from their combined effects on APC and CD4+ T cells. Furthermore, our results strongly support the key role of cAMP in the adjuvanticity of these toxins
    • …
    corecore