3 research outputs found

    General patterns of macrozoobenthos distribution in two rivers basins of the Khabarovsky Krai (Far East of Russia)

    Get PDF
    This article analyses the distribution patterns of macrozoobenthos in watercourses of the basins of the River Bajal and River Anyuy (Khabarovsky Krai, Russia) on the territories of the Bajal Sanctuary and Anyuy National Park. The distance-based linear models (DistLM) method was used to estimate the proportion of distribution of macroinvertebrates explained by the factors considered in the study (river basin, current velocity, substrate, channel width, temperature, pH). All of these factors contributed significantly, together explaining about one-third of the variability of macroinvertebrate distribution. The main explanatory factors were river basin and substrate (9.3% and 10.5%, respectively), as well as the current velocity (5.7%). Based on the cluster analysis, eight statistically significant groups of samples on the basis of similarity of taxonomic composition were identified. A set of indicator taxa was determined for each group and their indicator values were found. Using the Kruskal-Wallis analysis, the environmental factors significantly differing between the obtained groups and subgroups were singled out. There are well-defined patterns in the confinement of taxonomic complexes to certain habitats. Local environmental factors are the strong filter influencing the formation of taxonomic communities. The factor of belonging to the river basin also plays a significant role in the formation of invertebrate communities, which should be considered in the planning of monitoring studies on a large spatial scale. However, the distinguished groups and subgroups are characterised by a low level of internal similarity. Only about a quarter of the total species number belongs to indicator taxa, and samples do not form discrete clusters with obvious hiatus on the ordination diagram. The longitudinal distribution of macroinvertebrates for each river can be characterised as a punctuated gradient

    Species Diversity and Driving Factors of Benthic and Zooplanktonic Assemblages at Different Stages of Thermokarst Lake Development: A Case Study in the Lena River Delta (Middle Siberia)

    No full text
    Global climate change might result in permafrost thaw and the formation of thermokarst landscapes that release long-term carbon stocks as greenhouse into the atmosphere, thereby initiating a positive climate feedback. These processes are mediated by biological activity, including by microbes, vascular plants and animals, whereas the role of invertebrates in thermokarst ecosystems remains poorly understood. We investigated the diversity and assemblage structures of zooplankton (mainly Copepoda, Cladocera), microbenthos (testate amoebae) and meio- (Copepoda and Cladocera) and macrozoobenthos (mollusks, crustaceans, insects and annelids) from a range of water bodies representing different stages of thermokarst lake formation in the southern part of the Lena River Delta (Central Siberia). Altogether, 206 species of testate amoeba, mollusk, crustacean, insect and annelid taxa were identified. A total of 60 species of macrozoobenthos (mainly insects) and 62 species of testate amoebae were detected in the water bodies of the Lena River Delta for the first time. The species richness of zooplankton and meio- and macrozoobenthos was greater in the large thermokarst lakes than in the polygonal ponds due to the freezing of the latter in the winter. In contrast, the species richness of protists was higher in the polygonal ponds, which was related to the habitat preferences of testate amoebae. Fish grazing strongly affected the macrobenthos assemblages but not the smaller-sized organisms. Water acidity and temperature were the main environmental drivers of the assemblage structure of testate amoeba and microcrustacean. The species structure of the macroinvertebrate assemblages was significantly explained by water acidity, permafrost depth and size of the water area. It means that small size organisms with their short generation times are sensitive to more dynamic factors such as temperature and may serve as indicators of ecosystem changes due to global climate warming. In contrast, large size organisms are affected by driven factors that appear during thermokarst lakes formation and permafrost degradation

    Assemblages of Meiobenthic and Planktonic Microcrustaceans (Cladocera and Copepoda) from Small Water Bodies of Mountain Subarctic (Putorana Plateau, Middle Siberia)

    No full text
    The Putorana Plateau (Krasnoyarsk Territory, Russia) is one of the largest mountainous regions of subarctic Eurasia. Studies of aquatic ecosystems of this are far from complete. In particular, microcrustaceans (Cladocera и Copepoda) of the Putorana Plateau are poorly investigated, although they are one of the main components of meiobenthic and zooplanktonic communities and a target for monitoring of the anthropogenic influence and climate change. An open question is a biogeographical status of the crustacean fauna of the plateau. Additionally, it is unknown which environmental factors significantly affect benthic and planktonic crustacean assemblages? Based on the samples collected in tundra and forest tundra ponds in the western and central parts of the plateau, analysis of the composition of crustacean fauna and factors regulating the assemblage structure was performed. In total, 36 Cladocera and 24 Copepoda species were found. Of these, 23 taxa are new for the region, and four are new to science. Species richness of Copepoda is higher in the central part and on the western slopes of the plateau than in foothills, while number of the Cladocera species in contrast decreases in mountainous areas. Variations in meiobenthic assemblages are due to the research area, type of water supply and less affected by altitude above sea level. For planktonic assemblages the size of the water body and, to a lesser degree, by macrophytes species composition was significant. Almost 12.8% of microcrustacean species of the Putorana Plateau can be attributed to glacial relics. Crustacean fauna of the Putorana Plateau has a high species richness and distinguishes significantly from the fauna of both western and eastern regions of the Arctic. The specifics of faunal composition of the region are connected to the climatic features of Middle Siberia and the retaining of the Pleistocene fauna in some glacial refugia
    corecore