1,267 research outputs found

    Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach

    Get PDF
    Rivers are a major source of nutrients, carbon and alkalinity to the global ocean. In this study, we firstly estimate pre-industrial riverine loads of nutrients, carbon and alkalinity based on a hierarchy of weathering and terrestrial organic matter export models, while identifying regional hotspots of the riverine exports. Secondly, we implement the riverine loads into a global ocean biogeochemical model to describe their implications for oceanic nutrient concentrations, net primary production (NPP) and air–sea CO2 fluxes globally, as well as in an analysis of coastal regions. Thirdly, we quantitatively assess the terrestrial origins and the long-term fate of riverine carbon in the ocean. We quantify annual bioavailable pre-industrial riverine loads of 3.7 Tg P, 27 Tg N, 158 Tg Si and 603 Tg C delivered to the ocean globally. We thereby identify the tropical Atlantic catchments (20 % of global C), Arctic rivers (9 % of global C) and Southeast Asian rivers (15 % of global C) as dominant suppliers of carbon for the ocean. The riverine exports lead to a simulated net global oceanic CO2 source of 231 Tg C yr−1 to the atmosphere, which is mainly caused by inorganic carbon (source of 183 Tg C yr−1) and by organic carbon (source of 128 Tg C yr−1) riverine loads. Additionally, a sink of 80 Tg C yr−1 is caused by the enhancement of the biological carbon uptake from dissolved inorganic nutrient inputs from rivers and the resulting alkalinity production. While large outgassing fluxes are simulated mostly in proximity to major river mouths, substantial outgassing fluxes can be found further offshore, most prominently in the tropical Atlantic. Furthermore, we find evidence for the interhemispheric transfer of carbon in the model; we detect a larger relative outgassing flux (49 % of global riverine-induced outgassing) in the Southern Hemisphere in comparison to the hemisphere's relative riverine inputs (33 % of global C inputs), as well as an outgassing flux of 17 Tg C yr−1 in the Southern Ocean. The addition of riverine loads in the model leads to a strong NPP increase in the tropical west Atlantic, Bay of Bengal and the East China Sea (+166 %, +377 % and +71 %, respectively). On the light-limited Arctic shelves, the NPP is not strongly sensitive to riverine loads, but the CO2 flux is strongly altered regionally due to substantial dissolved inorganic and organic carbon supplies to the region. While our study confirms that the ocean circulation remains the main driver for biogeochemical distributions in the open ocean, it reveals the necessity to consider riverine inputs for the representation of heterogeneous features in the coastal ocean and to represent riverine-induced pre-industrial carbon outgassing in the ocean. It also underlines the need to consider long-term CO2 sources from volcanic and shale oxidation fluxes in order to close the framework's atmospheric carbon budget

    Neonate Intestinal Immune Response to CpG Oligodeoxynucleotide Stimulation

    Get PDF
    Background: The development of mucosal vaccines is crucial to efficiently control infectious agents for which mucosae are the primary site of entry. Major drawbacks of these protective strategies are the lack of effective mucosal adjuvant. Synthetic oligodeoxynucleotides that contain several unmethylated cytosine-guanine dinucleotide (CpG-ODN) motifs are now recognized as promising adjuvants displaying mucosal adjuvant activity through direct activation of TLR9-expressing cells. However, little is known about the efficacy of these molecules in stimulating the intestinal immune system in neonates. Methodology/Principal Findings: First, newborn mice received CpG-ODN orally, and the intestinal cytokine and chemokine response was measured. We observed that oral administration of CpG-ODN induces CXC and CC chemokine responses and a cellular infiltration in the intestine of neonates as detected by immunohistochemistry. We next compared the efficiency of the oral route to intraperitoneal administration in stimulating the intestinal immune responses of both adults and neonates. Neonates were more responsive to TLR9-stimulation than adults whatever the CpG-ODN administration route. Their intestinal epithelial cells (IECs) indirectly responded to TLR9 stimulation and contributed to the CXC chemokine response, whereas other TLR9-bearing cells of the lamina-propria produced CC chemokines and Th1-type cytokines. Moreover, we showed that the intestine of adult exhibited a significantly higher level of IL10 at homeostasis than neonates, which might be responsible for the unresponsiveness to TLR9-stimulation, as confirmed by our findings in IL10-deficient mice. Conclusions/Significance: This is the first report that deciphers the role played by CpG-ODN in the intestine of neonates. This work clearly demonstrates that an intraperitoneal administration of CpG-ODN is more efficient in neonates than in adults to stimulate an intestinal chemokine response due to their lower IL-10 intestinal level. In addition we report the efficiency of the oral route at inducing intestinal chemokine responses in neonate that might be taken into consideration for further vaccine development against neonatal diseases

    Mesenteric lymph node cells from neonates present a prominent IL-12 response to CpG oligodeoxynucleotide via an IL-15 feedback loop of amplification

    Get PDF
    At birth, the immune system is still in development making neonates more susceptible to infections. The recognition of microbial ligands is a key step in the initiation of immune responses. It can be mimicked to stimulate the immune system by the use of synthetic ligands recognising pattern recognition receptors. In human and mouse, it has been found that neonatal cytokine responses to toll-like receptor (TLR) ligands differ in many ways from those of adults but the relevant studies have been limited to cord blood and spleen cells. In this study, we compared the responses in neonate and adult sheep to CpG oligodeoxynucleotides (ODN), a TLR9 ligand, in both a mucosal and a systemic organ. We observed that in response to CpG-ODN more IL-12 was produced by neonatal than adult sheep cells from mesenteric lymph nodes (MLN) and spleen. This higher IL-12 response was limited to the first 20 days after birth for MLN cells but persisted for a longer period for spleen cells. The major IL-12-producing cells were identified as CD14+CD11b+. These cells were poor producers of IL-12 in response to direct stimulation with CpG-ODN and required the cooperation of other MLN cells. The difference in response to CpG-ODN between neonates and adults can be attributed to both a higher proportion of CD14+CD11b+ cells in neonate lambs and their higher capacity to produce IL-15. The IL-15 increases IL-12 production by an amplifying feedback loop involving CD40

    Comparative Genomic Profiling of Second Breast Cancers following First Ipsilateral Hormone Receptor-Positive Breast Cancers

    Get PDF
    Purpose: We compared the mutational profile of second breast cancers (SBC) following first ipislateral hormone receptor-positive breast cancers of patient-matched tumors to distinguish new primaries from true recurrences. Experimental design: Targeted next-generation sequencing using the Oncomine Tumor Mutation Load Assay. Variants were filtered according to their allele frequency ≥ 5%, read count ≥ 5X, and genomic effect and annotation. Whole genome comparative genomic hybridization array (CGH) was also performed to evaluate clonality. Results: Among the 131 eligible patients, 96 paired first breast cancer (FBC) and SBC were successfully sequenced and analyzed. Unshared variants specific to the FBC and SBC were identified in 71.9% and 61.5%, respectively. Paired samples exhibited similar frequency of gene variants, median number of variants per sample, and variant allele frequency of the reported variants except for GATA3. Among the 30 most frequent gene alterations, ARIDIA, NSD2, and SETD2 had statistically significant discordance rates in paired samples. Seventeen paired samples (17.7%) exhibited common variants and were considered true recurrences; these patients had a trend for less favorable survival outcomes. Among the 8 patients with available tissue for CGH analysis and considered new primaries by comparison of the mutation profiles, 4 patients had clonally related tumors. Conclusions: Patient-matched FBC and SBC analysis revealed that only a minority of patients exhibited common gene variants between the first and second tumor. Further analysis using larger cohorts, preferably using single-cell analyses to account for clonality, might better select patients with true recurrences and thereby better inform the decision-making process

    Pleth variability index and fluid management practices: a multicenter service evaluation.

    Get PDF
    peer reviewed[en] OBJECTIVES: The introduction of a new technology has the potential to modify clinical practices, especially if easy to use, reliable and non-invasive. This observational before/after multicenter service evaluation compares fluid management practices during surgery (with fluids volumes as primary outcome), and clinical outcomes (secondary outcomes) before and after the introduction of the Pleth Variability Index (PVI), a non-invasive fluid responsiveness monitoring. RESULTS: In five centers, 23 anesthesiologists participated during a 2-years period. Eighty-eight procedures were included. Median fluid volumes infused during surgery were similar before and after PVI introduction (respectively, 1000 ml [interquartile range 25-75 [750-1700] and 1000 ml [750-2000]). The follow-up was complete for 60 from these and outcomes were similar. No detectable change in the fluid management was observed after the introduction of a new technology in low to moderate risk surgery. These results suggest that the introduction of a new technology should be associated with an implementation strategy if it is intended to be associated with changes in clinical practice
    corecore