357 research outputs found
On Matter Coupling in 5D Kaluza-Klein Model
We analyze some unphysical features of the geodesic approach to matter
coupling in a compactified Kaluza-Klein scenario, like the q/m puzzle and the
huge massive modes. We propose a new approach, based on Papapetrou multipole
expansion, that provides a new equation for the motion of a test particle. We
show how this equation provides right couplings and does not generate huge
massive modes.Comment: 4 pages, to appear in Proceedings of the II Stueckelberg Workshop -
Int. J. Mod. Phys.
Universality of transport properties of ultra-thin oxide films
We report low-temperature measurements of current-voltage characteristics for
highly conductive Nb/Al-AlOx-Nb junctions with thicknesses of the Al interlayer
ranging from 40 to 150 nm and ultra-thin barriers formed by diffusive oxidation
of the Al surface. In the superconducting state these devices have revealed a
strong subgap current leakage. Analyzing Cooper-pair and quasiparticle currents
across the devices, we conclude that the strong suppression of the subgap
resistance comparing with conventional tunnel junctions originates from a
universal bimodal distribution of transparencies across the Al-oxide barrier
proposed earlier by Schep and Bauer. We suggest a simple physical explanation
of its source in the nanometer-thick oxide films relating it to strong local
barrier-height fluctuations which are generated by oxygen vacancies in thin
aluminum oxide tunnel barriers formed by thermal oxidation.Comment: revised text and a new figur
Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints
Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study
Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM
Tapping into rhythm generation circuitry in humans during simulated weightlessness conditions
An ability to produce rhythmic activity is ubiquitous for locomotor pattern generation and modulation. The role that the rhythmogenesis capacity of the spinal cord plays in injured populations has become an area of interest and systematic investigation among researchers in recent years, despite its importance being long recognized by neurophysiologists and clinicians. Given that each individual interneuron, as a rule, receives a broad convergence of various supraspinal and sensory inputs and may contribute to a vast repertoire of motor actions, the importance of assessing the functional state of the spinal locomotor circuits becomes increasingly evident. Air-stepping can be used as a unique and important model for investigating human rhythmogenesis since its manifestation is largely facilitated by a reduction of external resistance. This article aims to provide a review on current issues related to the "locomotor" state and interactions between spinal and supraspinal influences on the central pattern generator (CPG) circuitry in humans, which may be important for developing gait rehabilitation strategies in individuals with spinal cord and brain injuries
Dynamics of Matter in a Compactified Kaluza-Klein Model
A longstanding problem in Kaluza-Klein models is the description of matter
dynamics. Within the 5D model, the dimensional reduction of the geodesic motion
for a 5D free test particle formally restores electrodynamics, but the reduced
4D particle shows a charge-mass ratio that is upper bounded, such that it
cannot fit to any kind of elementary particle. At the same time, from the
quantum dynamics viewpoint, there is the problem of the huge massive modes
generation. We present a criticism against the 5D geodesic approach and face
the hypothesis that in Kaluza-Klein space the geodesic motion does not deal
with the real dynamics of test particle. We propose a new approach: starting
from the conservation equation for the 5D matter tensor, within the Papapetrou
multipole expansion, we prove that the 5D dynamical equation differs from the
5D geodesic one. Our new equation provides right coupling terms without
bounding and in such a scheme the tower of massive modes is removed.Comment: 21 pages, to appear on IJMP
Stars in five dimensional Kaluza Klein gravity
In the five dimensional Kaluza Klein (KK) theory there is a well known class
of static and electromagnetic--free KK--equations characterized by a naked
singularity behavior, namely the Generalized Schwarzschild solution (GSS). We
present here a set of interior solutions of five dimensional KK--equations.
These equations have been numerically integrated to match the GSS in the
vacuum. The solutions are candidates to describe the possible interior perfect
fluid source of the exterior GSS metric and thus they can be models for stars
for static, neutral astrophysical objects in the ordinary (four dimensional)
spacetime.Comment: 15 pages, 8 figures. To be published in EPJ
Representation of visual gravitational motion in the human vestibular cortex
How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain
Coupling of upper and lower limb pattern generators during human crawling at different arm/leg speed combinations
A crawling paradigm was performed by healthy adults to examine inter-limb coupling patterns and to understand how central pattern generators (CPGs) for the upper and lower limbs are coordinated. Ten participants performed hands-and-feet crawling on two separate treadmills, one for the upper limbs and another one for the lower limbs, the speed of each of them being changed independently. A 1:1 frequency relationship was often maintained even when the treadmill speed was not matched between the upper and lower limbs. However, relative stance durations in the upper limbs were only affected by changes of the upper limb treadmill speed, suggesting that although absolute times are adjusted, the relative proportions of stances and swing do not adapt to changes in lower limb treadmill speeds. With large differences between treadmill speeds, changes in upper and lower limb coupling ratio tended to occur when the upper limbs stepped at slower speeds than the lower limbs, but more rarely the other way around. These findings are in sharp contrast with those in the cat, where forelimbs always follow the rhythm of the faster moving hindlimbs. However, the fact that an integer frequency ratio is often maintained between the upper and lower limbs supports evidence of coupled CPG control. We speculate that the preference for the upper limb to decrease step frequency at lower speeds in humans may be due to weaker ascending propriospinal connections and/or a larger influence of cortical control on the upper limbs which allows for an overriding of spinal CPG control
- …