3,313 research outputs found

    Investigation of nickel hydrogen battery technology for the RADARSAT spacecraft

    Get PDF
    The low Earth orbit (LEO) operations of the RADARSAT spacecraft require high performance batteries to provide energy to the payload and platform during eclipse period. Nickel Hydrogen cells are currently competing with the more traditional Nickel Cadmium cells for high performance spacecraft applications at geostationary Earth orbit (GEO) and Leo. Nickel Hydrogen cells appear better suited for high power applications where high currents and high Depths of Discharge are required. Although a number of GEO missions have flown with Nickel Hydrogen batteries, it is not readily apparent that the LEO version of the Nickel Hydrogen cell is able to withstand the extended cycle lifetime (5 years) of the RADARSAT mission. The problems associated with Nickel Hydrogen cells are discussed in the contex of RADARSAT mission and a test program designed to characterize cell performance is presented

    The Triple-Bond Metathesis of Aryldiazonium Salts: A Prospect for Dinitrogen Cleavage

    No full text
    The {N2} unit of aryldiazonium salts undergoes unusually facile triple-bond metathesis on treatment with molybdenum or tungsten alkylidyne ate complexes endowed with triphenylsilanolate ligands. The reaction transforms the alkylidyne unit into a nitrile and the aryldiazonium entity into an imido ligand on the metal center, as unambiguously confirmed by X-ray structure analysis of two representative examples. A tungsten nitride ate complex is shown to react analogously. Since the bonding situation of an aryldiazonium salt is similar to that of metal complexes with end-on-bound dinitrogen, in which {N2}→M σ donation is dominant and electron back donation minimal, the metathesis described herein is thought to be a conceptually novel strategy toward dinitrogen cleavage devoid of any redox steps and, therefore, orthogonal to the established methods

    Nuclear Effects in Neutrino Induced Coherent Pion Production at K2K and MiniBooNE Neutrino Energies

    Full text link
    The coherent pion production induced by neutrinos in nuclei is studied using a delta hole model in local density approximation taking into account the renormalization of Δ\Delta properties in a nuclear medium. The pion absorption effects have been included in an eikonal approximation. These effects give a large reduction in the total cross section. The numerical results for the total cross section are found to be consistent with recent experimental results from K2K and MiniBooNE collaborations and other older experiments in the intermediate energy region.Comment: 4pages, 5figure

    Functional Characterisation of Alpha-Galactosidase A Mutations as a Basis for a New Classification System in Fabry Disease

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The study has been supported partially by an unrestricted scientific grant from Shire Human Genetic Therapies (Germany

    Getting to the Guts of HIV Pathogenesis

    Get PDF
    Two groups have shown that, as in macaques infected with simian immunodeficiency virus (SIV), intestinal CD4+ T cells are selectively and rapidly depleted in the intestine of HIV-infected patients. Depletion of intestinal CD4+ T cells occurred at all stages of infection regardless of highly active antiretroviral therapy (HAART). Here we discuss the important implications of these papers for our understanding of HIV pathogenesis, treatment, and vaccine design

    Theoretical study of neutrino-induced coherent pion production off nuclei at T2K and MiniBooNE energies

    Get PDF
    We have developed a model for neutrino-induced coherent pion production off nuclei in the energy regime of interest for present and forthcoming neutrino oscillation experiments. It is based on a microscopic model for pion production off the nucleon that, besides the dominant Delta pole contribution, takes into account the effect of background terms required by chiral symmetry. Moreover, the model uses a reduced nucleon-to-Delta resonance axial coupling, which leads to coherent pion production cross sections around a factor two smaller than most of the previous theoretical estimates. In the coherent production, the main nuclear effects, namely medium corrections on the Delta propagator and the final pion distortion, are included. We have improved on previous similar models by taking into account the nucleon motion and employing a more sophisticated optical potential. As found in previous calculations the modification of the Delta self-energy inside the nuclear medium strongly reduces the cross section, while the final pion distortion mainly shifts the peak position to lower pion energies. The angular distribution profiles are not much affected by nuclear effects. Nucleon motion increases the cross section by 15% at neutrino energies of 650 MeV, while Coulomb effects on charged pions are estimated to be small. Finally, we discuss at length the deficiencies of the Rein-Sehgal pion coherent production model for neutrino energies below 2 GeV, and in particular for the MiniBooNE and T2K experiments. We also predict flux averaged cross sections for these two latter experiments and K2K.Comment: 19 latex pages, 10 figures, 2 tables. Minor changes. Version accepted for publication in Physical Review

    Gold-Catalyzed Intramolecular Aminoarylation of Alkenes: C-C Bond Formation through Bimolecular Reductive Elimination

    Get PDF
    Gold-ilocks and the 3 mol % catalyst: Bimetallic gold bromides allow the room temperature aminoarylation of unactivated terminal olefins with aryl boronic acids using Selectfluor as an oxidant. A catalytic cycle involving gold(I)/gold(III) and a bimolecular reductive elimination for the key CC bond-forming step is proposed. dppm= bis(diphenylphosphanyl)methane

    Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    Full text link
    The dynamics of large scale plasma instabilities can strongly be influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK has been coupled with the resistive wall code STARWALL, which allows to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.Comment: Proceeding paper for Theory of Fusion Plasmas (Joint Varenna-Lausanne International Workshop), Varenna, Italy (September 1-5, 2014); accepted for publication in: to Journal of Physics: Conference Serie
    • …
    corecore