6,495 research outputs found

    The mass function

    Get PDF
    We present the mass functions for different mass estimators for a range of cosmological models. We pay particular attention to how universal the mass function is, and how it depends on the cosmology, halo identification and mass estimator chosen. We investigate quantitatively how well we can relate observed masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ

    Observational Constraints on the Self Interacting Dark Matter Scenario and the Growth of Supermassive Black Holes

    Full text link
    We consider the consequences of SIDM for a velocity dependent cross section per unit mass. Accretion of SIDM onto seed black holes can produce supermassive black holes that are too large for certain combinations of parameters,which is used to obtain a new constraint on the dark matter interaction. Constraints due to other considerations are presented and previous ones are generalized. The black hole constraint is extremely sensitive to the slope \alpha, of the inner density profile of dark halos. For the most probable value of \alpha=1.3, there exists a narrow range in parameter space, such that all constraints are satisfied. However, the adiabatic compression of the dark halo by baryons as they cool and contract in normal galaxies yields a steeper cusp, \alpha=1.7. This gives a tighter constraint, which would exclude SIDM as a possible solution to the purported problems with CDM in the absence of other dynamical processes. Nevertheless, SIDM with parameters consistent with this stronger constraint, can explain the ubiquity of supermassive black holes in the centers of galaxies. A ``best fit'' model is presented which reproduces the supermassive black hole masses and their observed correlations with the velocity dispersion of the host bulges. Specifically, the fourth power dependence of black hole mass on velocity dispersion is a direct consequence of the power spectrum having an index of n=-2. Although the dark matter collision rates for this model are too small to directly remedy problems with CDM, mergers between dark halos harboring supermassive black holes at high redshift could ameliorate the cuspy halo problem. This scenario also explains the lack of comparable supermassive black holes in bulgeless galaxies like M33.Comment: 30 pages, 6 figures, significant improvements: added new constraint, revised old constraints, changed figure

    Triggering the Formation of Halo Globular Clusters with Galaxy Outflows

    Full text link
    We investigate the interactions of high-redshift galaxy outflows with low-mass virialized (Tvir < 10,000K) clouds of primordial composition. While atomic cooling allows star formation in larger primordial objects, such "minihalos" are generally unable to form stars by themselves. However, the large population of high-redshift starburst galaxies may have induced widespread star formation in these objects, via shocks that caused intense cooling both through nonequilibrium H2 formation and metal-line emission. Using a simple analytic model, we show that the resulting star clusters naturally reproduce three key features of the observed population of halo globular clusters (GCs). First, the 10,000 K maximum virial temperature corresponds to the ~ 10^6 solar mass upper limit on the stellar mass of GCs. Secondly, the momentum imparted in such interactions is sufficient to strip the gas from its associated dark matter halo, explaining why GCs do not reside in dark matter potential wells. Finally, the mixing of ejected metals into the primordial gas is able to explain the ~ 0.1 dex homogeneity of stellar metallicities within a given GC, while at the same time allowing for a large spread in metallicity between different clusters. To study this possibility in detail, we use a simple 1D numerical model of turbulence transport to simulate mixing in cloud-outflow interactions. We find that as the shock shears across the side of the cloud, Kelvin-Helmholtz instabilities arise, which cause mixing of enriched material into > 20% of the cloud. Such estimates ignore the likely presence of large-scale vortices, however, which would further enhance turbulence generation. Thus quantitative mixing predictions must await more detailed numerical studies.Comment: 21 pages, 11 figures, Apj in pres

    Sunyaev - Zel'dovich fluctuations from spatial correlations between clusters of galaxies

    Full text link
    We present angular power spectra of the cosmic microwave background radiation anisotropy due to fluctuations of the Sunyaev-Zel'dovich (SZ) effect through clusters of galaxies. A contribution from the correlation among clusters is especially focused on, which has been neglected in the previous analyses. Employing the evolving linear bias factor based on the Press-Schechter formalism, we find that the clustering contribution amounts to 20-30% of the Poissonian one at degree angular scales. If we exclude clusters in the local universe, it even exceeds the Poissonian noise, and makes dominant contribution to the angular power spectrum. As a concrete example, we demonstrate the subtraction of the ROSAT X-ray flux-limited cluster samples. It indicates that we should include the clustering effect in the analysis of the SZ fluctuations. We further find that the degree scale spectra essentially depend upon the normalization of the density fluctuations, i.e., \sigma_8, and the gas mass fraction of the cluster, rather than the density parameter of the universe and details of cluster evolution models. Our results show that the SZ fluctuations at the degree scale will provide a possible measure of \sigma_8, while the arc-minute spectra a probe of the cluster evolution. In addition, the clustering spectrum will give us valuable information on the bias at high redshift, if we can detect it by removing X-ray luminous clusters.Comment: 11 pages, 4 figures, submitted to Astrophysical Journa

    Double Distribution of Dark Matter Halos with respect to Mass and Local Overdensity

    Full text link
    We present a double distribution function of dark matter halos, with respect to both object mass and local over- (or under-) density. This analytical tool provides a statistical treatment of the properties of matter surrounding collapsed objects, and can be used to study environmental effects on hierarchical structure formation. The size of the "local environment" of a collapsed object is defined to depend on the mass of the object. The Press-Schechter mass function is recovered by integration of our double distribution over the density contrast. We also present a detailed treatment of the evolution of overdensities and underdensities in Einstein-deSitter and flat LCDM universes, according to the spherical evolution model. We explicitly distinguish between true and linearly extrapolated overdensities and provide conversion relations between the two quantities.Comment: 25 pages, 10 figures, comments welcom

    The Robustness of Dark Matter Density Profiles in Dissipationless Mergers

    Full text link
    We present a comprehensive series of dissipationless N-body simulations to investigate the evolution of density distribution in equal-mass mergers between dark matter (DM) halos and multicomponent galaxies. The DM halo models are constructed with various asymptotic power-law indices ranging from steep cusps to core-like profiles and the structural properties of the galaxy models are motivated by the LCDM paradigm of structure formation. The adopted force resolution allows robust density profile estimates in the inner ~1% of the virial radii of the simulated systems. We demonstrate that the central slopes and overall shapes of the remnant density profiles are virtually identical to those of the initial systems suggesting that the remnants retain a remarkable memory of the density structure of their progenitors, despite the relaxation that accompanies merger activity. We also find that halo concentrations remain approximately constant through hierarchical merging involving identical systems and show that remnants contain significant fractions of their bound mass well beyond their formal virial radii. These conclusions hold for a wide variety of initial asymptotic density slopes, orbital energies, and encounter configurations, including sequences of consecutive merger events, simultaneous mergers of severals ystems, and mergers of halos with embedded cold baryonic components in the form of disks, spheroids, or both. As an immediate consequence, the net effect of gas cooling, which contracts and steepens the inner density profiles of DM halos, should be preserved through a period of dissipationless major merging. Our results imply that the characteristic universal shape of DM density profiles may be set early in the evolution of halos.Comment: Accepted for publication in ApJ, 20 pages, 10 figures, LaTeX (uses emulateapj.cls
    • …
    corecore