2 research outputs found

    Nuclear Thermal Propulsion

    Get PDF
    This chapter will cover the fundamentals of nuclear thermal propulsion systems, covering basic principles of operation and why nuclear is a superior option to chemical rockets for interplanetary travel. It will begin with a historical overview from early efforts in the early 1950s up to current interests, with respect to fuel types, core materials, and ongoing testing efforts. An overview will be provided of reactor types and design elements for reactor concepts or testing systems for nuclear thermal propulsion, followed by a discussion of nuclear thermal design concepts. A section on system design and modeling will be presented to discuss modeling and simulation of driving phenomena: neutronics, materials performance, heat transfer, and structural mechanics, solved in a tightly coupled multiphysics system. Finally, it will show the results of a coupled physics model for a conceptual design with simulation of rapid startup transients needed to maximize hydrogen efficiency

    Multiphysics Simulation of the NASA SIRIUS-CAL Fuel Experiment in the Transient Test Reactor Using Griffin

    No full text
    After approximately 50 years, NASA is restarting efforts to develop nuclear thermal propulsion (NTP) for interplanetary missions. Building upon nuclear engine tests performed from the late 1950s to the early 1970s, the present research and testing focuses on advanced materials and fabrication methods. A number of transient tests have been performed to evaluate materials performance under high-temperature, high-flux conditions, with several more experiments in the pipeline for future testing. The measured data obtained from those tests are being used to validate the Griffin reactor multiphysics code for this particular type of application. Griffin was developed at Idaho National Laboratory (INL) using the MOOSE framework. This article describes the simulation results of the SIRIUS-CAL calibration experiment in the Transient Reactor Test Facility (TREAT). SIRIUS-CAL was the first transient test conducted on NASA fuels, and although the test was performed with a relatively low core peak power, the test specimen survived a temperature exceeding 900 K. Griffin simulations of the experiment successfully matched the reactor’s power transient after calibrating the initial control rod position to match the initial reactor period. The thermal-hydraulics model largely matches the time-dependent response of a thermocouple located within the experiment specimen to within the uncertainty estimate. However, the uncertainty range is significant and must be reduced in the future
    corecore