17 research outputs found

    Excitonic AND Logic Gates on DNA Brick Nanobreadboards

    Get PDF
    A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems

    Implant radiography and radiology

    No full text
    The practitioner placing dental implants has many options with respect to pre-implant radiographic assessment of the jaws. The advantages and disadvantages of the imaging modalities currently available for pre-implant imaging are discussed in some detail. Intra-oral and extra-oral radiographs are generally low dose but the information provided is limited as the images are not three-dimensional. Tomography is three-dimensional, but the image quality is highly variable. Computed tomography (CT) has been the gold standard for many years as the information provided is three-dimensional and generally very accurate. However, CT examinations are expensive and deliver a relatively high radiation dose to the patient. The latest imaging modality introduced is cone beam volumetric tomography (CBVT) and this technology is very promising with regard to pre-implant imaging. CBVT generally delivers a lower dose to the patient than CT and provides reasonably sharp images with three-dimensional information. A comparison between CT and CBVT is provided. Magnetic resonance imaging is showing some promise, but the examinations are not readily available, generally expensive and bone is not well imaged. Magnetic resonance imaging is excellent for demonstrating soft tissues and therefore may be of great use in identifying the inferior dental nerve and vessels. All of the above technology is of little value if the information required is not obtained and so information is also provided on imaging of some of the vital structures. Of particular interest is the inferior dental canal, incisive canals of the mandible, genial foramina and canals, maxillary sinus and the incisive canal and foramen of the maxilla
    corecore