242 research outputs found
Mosaic DNA imports with interspersions of recipient sequence after natural transformation of Helicobacter pylori
Helicobacter pylori colonizes the gastric mucosa of half of the human population, causing gastritis, ulcers, and cancer. H. pylori
is naturally competent for transformation by exogenous DNA, and recombination during mixed infections of one stomach
with multiple H. pylori strains generates extensive allelic diversity. We developed an in vitro transformation protocol to study
genomic imports after natural transformation of H. pylori. The mean length of imported fragments was dependent on the
combination of donor and recipient strain and varied between 1294 bp and 3853 bp. In about 10% of recombinant clones, the
imported fragments of donor DNA were interrupted by short interspersed sequences of the recipient (ISR) with a mean length
of 82 bp. 18 candidate genes were inactivated in order to identify genes involved in the control of import length and
generation of ISR. Inactivation of the antimutator glycosylase MutY increased the length of imports, but did not have a
significant effect on ISR frequency. Overexpression of mutY strongly increased the frequency of ISR, indicating that MutY, while
not indispensable for ISR formation, is part of at least one ISR-generating pathway. The formation of ISR in H. pylori increases
allelic diversity, and contributes to the uniquely low linkage disequilibrium characteristic of this pathogen
Phylogenetic and Molecular Characterization of a 23S Ribosomal-Rna Gene Positions the Genus Campylobacter in the Epsilon-Subdivision of the Proteobacteria and Shows That the Presence of Transcribed Spacers Is Common in Campylobacter Spp
The nucleotide sequence of a 23S rRNA gene of Campylobacter coli VC167 was determined. The primary sequence of the C. coli 23S rRNA was deduced, and a secondary-structure model was constructed. Comparison with Escherichia coli 23S rRNA showed a major difference in the C. coli rRNA at approximately position 1170 (E. coli numbering) in the form of an extra sequence block approximately 147 bp long. PCR analysis of 31 other strains of C. coli and C. jejuni showed that 69% carried a transcribed spacer of either ca, 147 or ca. 37 bp. Comparison of all sequenced Campylobacter transcribed spacers showed that the Campylobacter inserts were related in sequence and percent G+C content. All Campylobacter strains carrying transcribed spacers in their 23S rRNA genes produced fragmented 23S rRNAs. Other strains which produced unfragmented 23S rRNAs did not appear to carry transcribed spacers at this position in their 23S rRNA genes. At the 1850 region (E. coli numbering), Campylobacter 23S rRNA displayed a base pairing signature most like that of the beta and gamma subdivisions of the class Proteobacteria, but in the 270 region, Campylobacter 23S rRNA displayed a helix signature which distinguished it from the alpha, beta, and gamma subdivisions. Phylogenetic analysis comparing C. coli VC167 23S rRNA and a C. jejuni TGH9011 (ATCC 43431) 23S rRNA with 53 other completely sequenced (eu)bacterial 23S rRNAs showed that the two campylobacters form a sister group to the alpha, beta, and gamma proteobacterial 23S rRNAs, a positioning consistent with the idea that the genus Campylobacter belongs to the epsilon subdivision of the class Proteobacteria
Gene disruption and replacement as a feasible approach for mutagenesis of Campylobacter jejuni.
Campylobacter jejuni and Campylobacter coli are important causes of human enteric infections. Several determinants of pathogenicity have been proposed based on the clinical features of diarrheal disease and on the phenotypic properties of Campylobacter strains. To facilitate an understanding of the genetic determinants of Campylobacter virulence, we have developed a method for constructing C. jejuni mutants by shuttle mutagenesis. In the example described here, a kanamycin resistance gene was inserted into Campylobacter DNA fragments encoding 16S rRNA cloned in Escherichia coli. These disrupted, modified sequences were returned to C. jejuni via conjugation. Through the apparent process of homologous recombination, the kanamycin resistance-encoding sequences were rescued by chromosomal integration, resulting in the simultaneous gene replacement of one of the 16S sequences of C. jejuni and the loss of the vector. We propose that Campylobacter isogenic mutants could be developed by using this system of shuttle mutagenesis
Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions.
Helicobacter pylori produces a potent urease that is believed to play a role in the pathogenesis of gastroduodenal diseases. Four genes (ureA, ureB, ureC, and ureD) were previously shown to be able to achieve a urease-positive phenotype when introduced into Campylobacter jejuni, whereas Escherichia coli cells harboring these genes did not express urease activity (A. Labigne, V. Cussac, and P. Courcoux, J. Bacteriol. 173:1920-1931, 1991). Results that demonstrate that H. pylori urease genes could be expressed in E. coli are presented in this article. This expression was found to be dependent on the presence of accessory urease genes hitherto undescribed. Subcloning of the recombinant cosmid pILL585, followed by restriction analyses, resulted in the cloning of an 11.2-kb fragment (pILL753) which allowed the detection of urease activity (0.83 +/- 0.39 mumol of urea hydrolyzed per min/mg of protein) in E. coli cells grown under nitrogen-limiting conditions. Transposon mutagenesis of pILL753 with mini-Tn3-Km permitted the identification of a 3.3-kb DNA region that, in addition to the 4.2-kb region previously identified, was essential for urease activity in E. coli. Sequencing of the 3.3-kb DNA fragment revealed the presence of five open reading frames encoding polypeptides with predicted molecular weights of 20,701 (UreE), 28,530 (UreF), 21,744 (UreG), 29,650 (UreH), and 19,819 (UreI). Of the nine urease genes identified, ureA, ureB, ureF, ureG, and ureH were shown to be required for urease expression in E. coli, as mutations in each of these genes led to negative phenotypes. The ureC, ureD, and ureI genes are not essential for urease expression in E. coli, although they belong to the urease gene cluster. The predicted UreE and UreG polypeptides exhibit some degree of similarity with the respective polypeptides encoded by the accessory genes of the Klebsiella aerogenes urease operon (33 and 92% similarity, respectively, taking into account conservative amino acid changes), whereas this homology was restricted to a domain of the UreF polypeptide (44% similarity for the last 73 amino acids of the K. aerogenes UreF polypeptide). With the exception of the two UreA and UreB structural polypeptides of the enzyme, no role can as yet be assigned to the nine proteins encoded by the H. pylori urease gene cluster
- …