113 research outputs found
A Perron theorem for matrices with negative entries and applications to Coxeter groups
Handelman (J. Operator Theory, 1981) proved that if the spectral radius of a
matrix is a simple root of the characteristic polynomial and is strictly
greater than the modulus of any other root, then is conjugate to a matrix
some power of which is positive. In this article, we provide an explicit
conjugate matrix , and prove that the spectral radius of is a simple and
dominant eigenvalue of if and only if is eventually positive. For
real matrices with each row-sum equal to , this criterion can be
declined into checking that each entry of some power is strictly larger than
the average of the entries of the same column minus . We apply the
criterion to elements of irreducible infinite nonaffine Coxeter groups to
provide evidences for the dominance of the spectral radius, which is still
unknown.Comment: 14 page
On inversion sets and the weak order in Coxeter groups
In this article, we investigate the existence of joins in the weak order of
an infinite Coxeter group W. We give a geometric characterization of the
existence of a join for a subset X in W in terms of the inversion sets of its
elements and their position relative to the imaginary cone. Finally, we discuss
inversion sets of infinite reduced words and the notions of biconvex and
biclosed sets of positive roots.Comment: 22 pages; 10 figures; v2 some references were added; v2: final
version, to appear in European Journal of Combinatoric
Convex Geometry of Subword Complexes of Coxeter Groups
This monography presents results related to the convex geometry of a family of simplicial complexes called ``subword complexes''.
These simplicial complexes are defined using the Bruhat order of Coxeter groups.
Despite a simple combinatorial definition much of their combinatorial properties are still not understood.
In contrast, many of their known connections make use of specific geometric realizations of these simplicial complexes.
When such realizations are missing, many connections can only be conjectured to exist.
This monography lays down a framework using an alliance of algebraic combinatorics and discrete geometry to study further subword complexes.
It provides an abstract, though transparent, perspective on subword complexes based on linear algebra and combinatorics on words.
The main contribution is the presentation of a universal partial oriented matroid whose realizability over the real numbers implies the realizability of subword complexes as oriented matroids.Diese Monographie präsentiert Ergebnisse im Zusammenhang mit einer Familie von simplizialen Komplexen, die "Subwortkomplexe" genannt werden.
Diese Simplizialkomplexe werden mit Hilfe der Bruhat-Ordnung von Coxeter-Gruppen definiert.
Trotz einer einfachen kombinatorischen Definition werden viele ihrer kombinatorischen Eigenschaften immer noch nicht verstanden.
Spezifische geometrische Realisierungen dieser Simplizialkomplexe machen neue Herangehensweisen an Vermutungen des Gebiets m\"oglich.
Wenn solche Verbindungen fehlen, können viele Zusammenhänge nur vermutet werden.
Diese Monographie legt einen Rahmen fest, in dem eine Allianz aus algebraischer Kombinatorik und diskreter Geometrie verwendet wird, um weitere Subwortkomplexe zu untersuchen.
Es bietet eine abstrakte und transparente Perspektive auf Teilwortkomplexe, die auf linearer Algebra und Kombinatorik von Wörtern basiert.
Der Hauptbeitrag ist die Darstellung eines universellen, nur teilweise orientierten Matroids, dessen Realisierbarkeit ĂĽber den reellen Zahlen die Realisierbarkeit von Teilwortkomplexen als orientierte Matroide impliziert
- …