155 research outputs found

    Chern-Simons Gauge Theory: Ten Years After

    Get PDF
    A brief review on the progress made in the study of Chern-Simons gauge theory since its relation to knot theory was discovered ten years ago is presented. Emphasis is made on the analysis of the perturbative study of the theory and its connection to the theory of Vassiliev invariants. It is described how the study of the quantum field theory for three different gauge fixings leads to three different representations for Vassiliev invariants. Two of these gauge fixings lead to well known representations: the covariant Landau gauge corresponds to the configuration space integrals while the non-covariant light-cone gauge to the Kontsevich integral. The progress made in the analysis of the third gauge fixing, the non-covariant temporal gauge, is described in detail. In this case one obtains combinatorial expressions, instead of integral ones, for Vassiliev invariants. The approach based on this last gauge fixing seems very promising to obtain a full combinatorial formula. We collect the combinatorial expressions for all the Vassiliev invariants up to order four which have been obtained in this approach.Comment: 62 pages, 21 figures, lecture delivered at the workshop "Trends in Theoretical Physics II", Buenos Aires, November 199

    Primitive Vassiliev Invariants and Factorization in Chern-Simons Perturbation Theory

    Full text link
    The general structure of the perturbative expansion of the vacuum expectation value of a Wilson line operator in Chern-Simons gauge field theory is analyzed. The expansion is organized according to the independent group structures that appear at each order. It is shown that the analysis is greatly simplified if the group factors are chosen in a certain way that we call canonical. This enables us to show that the logarithm of a polinomial knot invariant can be written in terms of primitive Vassiliev invariants only.Comment: 15 pages, latex, 2 figure
    corecore