84 research outputs found

    KELT-22Ab: A Massive, Short-Period Hot Jupiter Transiting a Near-solar Twin

    Get PDF
    We present the discovery of KELT-22Ab, a hot Jupiter from the KELT-South survey. KELT-22Ab transits the moderately bright (V∼11.1) Sun-like G2V star TYC 7518-468-1. The planet has an orbital period of P = 1.3866529±0.0000027 days, a radius of R_P = 1.285^(+0.12)_(−0.071) R_J, and a relatively large mass of M_P = 3.47^(+0.15)_(−0.14) M_J. The star has R⋆ = 1.099^(+0.079)_(−0.046) R⊙, M⋆ = 1.092^(+0.045)_(−0.041) M⊙, T_(eff) = 5767^(+50)_(−49) K, log g⋆ = 4.393^(+0.039)_(−0.060) (cgs), and [m/H] = +0.259^(+0.085)_(−0.083), and thus, other than its slightly super-solar metallicity, appears to be a near solar twin. Surprisingly, KELT-22A exhibits kinematics and a Galactic orbit that are somewhat atypical for thin disk stars. Nevertheless, the star is rotating quite rapidly for its estimated age, shows evidence of chromospheric activity, and is somewhat metal rich. Imaging reveals a slightly fainter companion to KELT-22A that is likely bound, with a projected separation of 6” (∼1400 AU). In addition to the orbital motion caused by the transiting planet, we detect a possible linear trend in the radial velocity of KELT-22A suggesting the presence of another relatively nearby body that is perhaps non-stellar. KELT-22Ab is highly irradiated (as a consequence of the small semi-major axis of a/R⋆ = 4.97), and is mildly inflated. At such small separations, tidal forces become significant. The configuration of this system is optimal for measuring the rate of tidal dissipation within the host star. Our models predict that, due to tidal forces, the semi-major axis of KELT-22Ab is decreasing rapidly, and is thus predicted to spiral into the star within the next Gyr

    Photometric variability of the LAMOST sample of magnetic chemically peculiar stars as seen by TESS

    Full text link
    High-quality light curves from space missions have opened up a new window on the rotational and pulsational properties of magnetic chemically peculiar (mCP) stars and have fuelled asteroseismic studies. They allow the internal effects of surface magnetic fields to be probed and numerous astrophysical parameters to be derived with great precision. We present an investigation of the photometric variability of a sample of 1002 mCP stars discovered in the LAMOST archival spectra with the aims of measuring their rotational periods and identifying interesting objects for follow-up studies. TESS photometry was available for 782 mCP stars and was analysed using a Fourier two-term frequency fit to determine the stars' rotational periods. The rotational signal was then subtracted from the light curve to identify non-rotational variability. A pixel-level blending analysis was performed to check whether the variability originates in the target star or a nearby blended neighbour. We investigated correlations between the rotational periods, fractional age on the main sequence, mass, and several other observables. We present rotational periods and period estimates for 720 mCP stars. In addition, we identified four eclipsing binary systems that likely host an mCP star, as well as 25 stars with additional signals consistent with pulsation (12 stars with frequencies above 10 d1^{-1} and 13 stars with frequencies below 10 1^{-1}). We find that more evolved stars have longer rotation periods, in agreement with the assumption of the conservation of angular momentum during main-sequence evolution. With our work, we increase the sample size of mCP stars with known rotation periods and identify prime candidates for detailed follow-up studies. This enables two paths towards future investigations: population studies of even larger samples of mCP stars and the detailed characterisation of high-value targets.Comment: 30 pages, 9 figures, 1 table. Accepted for publication in the Journal of Astronomy and Astrophysics (A&A

    A new study of the spectroscopic binary 7 Vul with a Be star primary

    Full text link
    We confirmed the binary nature of the Be star 7~Vul, derived a~more accurate spectroscopic orbit with an orbital period of (69.4212+/-0.0034) d, and improved the knowledge of the basic physical elements of the system. Analyzing available photometry and the strength of the \ha emission, we also document the long-term spectral variations of the Be primary. In addition, we confirmed rapid light changes with a~period of 0.5592 d, which is comparable to the expected rotational period of the Be primary, but note that its amplitude and possibly its period vary with time. We were able to disentangle only the He I 6678 A line of the secondary, which could support our tentative conclusion that the secondary appears to be a hot subdwarf. A search for this object in high-dispersion far-UV spectra could provide confirmation. Probable masses of the binary components are (6±16\pm1)~Mnom \ and (0.6±0.10.6\pm0.1)~Mnom. If the presence of a hot subdwarf is firmly confirmed, 7 Vul might be identified as a rare object with a B4-B5 primary; all Be + hot subdwarf systems found so far contain B0-B3 primaries.Comment: 17 pages, 23 figures, accepted for publication in Astronomy and Astrophysic
    corecore