386 research outputs found

    Silicon vacancy in SiC: A high-spin state defect

    Get PDF
    We report results from spin-polarized ab initio local spin-density calculations for the silicon vacancy (VSi) in 3C– and 2H–SiC in all its possible charge states. The calculated electronic structure for SiC reveals the presence of a stable spin-aligned electron-state t2 near the midgap. The neutral and doubly negative charge states of VSi in 3C–SiC are stabilized in a high-spin configuration with S=1 giving rise to a ground state, which is a many-electron orbital singlet 3T1. For the singly negative VSi, we find a high-spin ground-state4A2 with S=3/2. In the high-spin configuration, VSi preserves the Td symmetry. These results indicate that in neutral, singly, and doubly negative charge states a strong exchange coupling, which prefers parallel electron spins, overcomes the Jahn–Teller energy. In other charge states, the ground state of VSi has a low-spin configuration.Peer reviewe

    Charging Induced Emission of Neutral Atoms from NaCl Nanocube Corners

    Full text link
    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutralized. We carried out first principles density functional calculations and simulations of neutral and charged NaCl nanocubes, to establish the energetics of extraction of neutralized corner ions. Following hole donation (electron removal) we find that detachment of neutral Cl corner atoms will require a limited energy of about 0.8 eV. Conversely, following the donation of an excess electron to the cube, a neutral Na atom is extractable from the corner at the lower cost of about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100) surface state, which we also determine) is estimated to lie about 1.8 eV below vacuum, the overall energy balance upon donation to the nanocube of a zero energy electron from vacuum will be exothermic. The atomic and electronic structure of the NaCl(100) surface, and of the nanocube Na and Cl corner vacancies are obtained and analyzed as a byproduct.Comment: 16 pages, 2 table, 7 figure

    Ab initio molecular dynamics study of liquid methanol

    Get PDF
    We present a density-functional theory based molecular-dynamics study of the structural, dynamical, and electronic properties of liquid methanol under ambient conditions. The calculated radial distribution functions involving the oxygen and hydroxyl hydrogen show a pronounced hydrogen bonding and compare well with recent neutron diffraction data, except for an underestimate of the oxygen-oxygen correlation. We observe that, in line with infrared spectroscopic data, the hydroxyl stretching mode is significantly red-shifted in the liquid. A substantial enhancement of the dipole moment is accompanied by significant fluctuations due to thermal motion. Our results provide valuable data for improvement of empirical potentials.Comment: 14 pages, 4 figures, accepted for publication in Chemical Physics Letter

    Magnetic reconstruction at (001) CaMnO3_3 surface

    Full text link
    The Mn-terminated (001) surface of the stable anti-ferromagnetic insulating phase of cubic perovskite CaMnO3_3 is found to undergo a magnetic reconstruction consisting on a spin-flip process at surface: each Mn spin at the surface flips to pair with that of Mn in the subsurface layer. In spite of very little Mn-O charge transfer at surface, the surface behavior is driven by the ege_g states due to dxyd_{xy} \to dz2d_{z^2} charge redistribution. These results, based on local spin density theory, give a double exchange like coupling that is driven by ege_g character, not additional charge, and may have relevance to CMR materials.Comment: 4 pages, 5 figures reference added Fig. 3 modified. Caption of Fig. 5 modifie

    Electronic properties of metal induced gap states at insulator/metal interfaces -- dependence on the alkali halide and the possibility of excitonic mechanism of superconductivity

    Full text link
    Motivated from the experimental observation of metal induced gap states (MIGS) at insulator/metal interfaces by Kiguchi {\it et al.} [Phys. Rev. Lett. {\bf 90}, 196803 (2003)], we have theoretically investigated the electronic properties of MIGS at interfaces between various alkali halides and a metal represented by a jellium with the first-principles density functional method. We have found that, on top of the usual evanescent state, MIGS generally have a long tail on halogen sites with a pzp_z-like character, whose penetration depth (λ\lambda) is as large as half the lattice constant of bulk alkali halides. This implies that λ\lambda, while little dependent on the carrier density in the jellium, is dominated by the lattice constant (hence by energy gap) of the alkali halide, where λLiF<λLiCl<λLiI\lambda_{\rm LiF} < \lambda_{\rm LiCl} < \lambda_{\rm LiI}. We also propose a possibility of the MIGS working favorably for the exciton-mediated superconductivity.Comment: 7 pages, 9 figure

    Double exchange-driven spin pairing at the (001) surface of manganites

    Full text link
    The (001) surface of La_{1-x}Ca_xMnO_3 system in various magnetic orderings is studied by first principle calculations. A general occurrence is that z^2 dangling bond charge -- which is ``invisible'' in the formal valence picture -- is promoted to the bulk gap/Fermi level region. This drives a double-exchange-like process that serves to align the surface Mn spin with its subsurface neighbor, regardless of the bulk magnetic order. For heavy doping, the locally ``ferromagnetic'' coupling is very strong and the moment enhanced by as much as 30% over the bulk value.Comment: 6 pages, 4 figure

    Thermal diffusion of supersonic solitons in an anharmonic chain of atoms

    Full text link
    We study the non-equilibrium diffusion dynamics of supersonic lattice solitons in a classical chain of atoms with nearest-neighbor interactions coupled to a heat bath. As a specific example we choose an interaction with cubic anharmonicity. The coupling between the system and a thermal bath with a given temperature is made by adding noise, delta-correlated in time and space, and damping to the set of discrete equations of motion. Working in the continuum limit and changing to the sound velocity frame we derive a Korteweg-de Vries equation with noise and damping. We apply a collective coordinate approach which yields two stochastic ODEs which are solved approximately by a perturbation analysis. This finally yields analytical expressions for the variances of the soliton position and velocity. We perform Langevin dynamics simulations for the original discrete system which fully confirm the predictions of our analytical calculations, namely noise-induced superdiffusive behavior which scales with the temperature and depends strongly on the initial soliton velocity. A normal diffusion behavior is observed for very low-energy solitons where the noise-induced phonons also make a significant contribution to the soliton diffusion.Comment: Submitted to PRE. Changes made: New simulations with a different method of soliton detection. The results and conclusions are not different from previous version. New appendixes containing information about the system energy and soliton profile
    corecore