11 research outputs found

    Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Côte d'Ivoire

    Get PDF
    Recently identified hantaviruses harbored by shrews and moles (order Soricomorpha) suggest that other mammals having shared ancestry may serve as reservoirs. To investigate this possibility, archival tissues from 213 insectivorous bats (order Chiroptera) were analyzed for hantavirus RNA by RT-PCR. Following numerous failed attempts, hantavirus RNA was detected in ethanol-fixed liver tissue from two banana pipistrelles (Neoromicia nanus), captured near Mouyassué village in Côte d'Ivoire, West Africa, in June 2011. Phylogenetic analysis of partial L-segment sequences using maximum-likelihood and Bayesian methods revealed that the newfound hantavirus, designated Mouyassué virus (MOUV), was highly divergent and basal to all other rodent- and soricomorph-borne hantaviruses, except for Nova virus in the European common mole (Talpa europaea). Full genome sequencing of MOUV and further surveys of other bat species for hantaviruses, now underway, will provide critical insights into the evolution and diversification of hantaviruses

    Evolutionary Insights from a Genetically Divergent Hantavirus Harbored by the European Common Mole (Talpa europaea)

    Get PDF
    BACKGROUND:The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary. METHODOLOGY/PRINCIPAL FINDINGS:Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54-65% and 46-63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses. CONCLUSIONS:Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts

    Hantavirus in Northern Short-tailed Shrew, United States

    Get PDF
    Phylogenetic analyses, based on partial medium- and large-segment sequences, support an ancient evolutionary origin of a genetically distinct hantavirus detected by reverse transcription–PCR in tissues of northern short-tailed shrews (Blarina brevicauda) captured in Minnesota in August 1998. To our knowledge, this is the first evidence of hantaviruses harbored by shrews in the Americas

    A Triad of Subunits from the Gal11/Tail Domain of Srb Mediator Is an In Vivo Target of Transcriptional Activator Gcn4p

    No full text
    The Srb mediator is an important transcriptional coactivator for Gcn4p in the yeast Saccharomyces cerevisiae. We show that three subunits of the Gal11/tail domain of mediator, Gal11p, Pgd1p, and Med2p, and the head domain subunit Srb2p make overlapping contributions to the interaction of mediator with recombinant Gcn4p in vitro. Each of these proteins, along with the tail subunit Sin4p, also contributes to the recruitment of mediator by Gcn4p to target promoters in vivo. We found that Gal11p, Med2p, and Pgd1p reside in a stable subcomplex in sin4Δ cells that interacts with Gcn4p in vitro and that is recruited independently of the rest of mediator by Gcn4p in vivo. Thus, the Gal11p/Med2p/Pgd1p triad is both necessary for recruitment of intact mediator and appears to be sufficient for recruitment by Gcn4p as a free subcomplex. The med2Δ mutation impairs the recruitment of TATA binding protein (TBP) and RNA polymerase II to the promoter and the induction of transcription at ARG1, demonstrating the importance of the tail domain for activation by Gcn4p in vivo. Even though the Gal11p/Med2p/Pgd1p triad is the only portion of Srb mediator recruited efficiently to the promoter in the sin4Δ strain, this mutant shows high-level TBP recruitment and wild-type transcriptional induction at ARG1. Hence, the Gal11p/Med2p/Pgd1p triad may contribute to TBP recruitment independently of the rest of mediator

    in the banana pipistrelle (Neoromicia nanus)

    No full text
    Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Côte d'Ivoire Sumibcay et al. Sumibcay et al. Virology Journal 2012, 9:3
    corecore