1,133 research outputs found

    The role of surfactants in Köhler theory reconsidered

    No full text
    International audienceAtmospheric aerosol particles typically consist of inorganic salts and organic material. The inorganic compounds as well as their hygroscopic properties are well defined, but the effect of organic compounds on cloud droplet activation is still poorly characterized. The focus of the present study is in the organic compounds that are surface active i.e. they concentrate on droplet surface and decrease droplet surface tension. Gibbsian surface thermodynamics were used to find out how partitioning in binary and ternary aqueous solutions affects the droplet surface tension and the droplet bulk concentration in droplets large enough to act as cloud condensation nuclei. Sodium dodecyl sulfate was used as a model compound together with sodium chloride to find out the effect the correct evaluation of surfactant partitioning has on the solute effect (Raoult effect). While the partitioning is known to lead to higher surface tension compared to a case in which partitioning is neglected, the present results show that the partitioning also alters the solute effect, and that the change is large enough to further increase the critical supersaturation and hence decrease the droplet activation. The fraction of surfactant partitioned to droplet surface increases with decreasing droplet size, which suggests that surfactants might enhance the activation of larger particles relatively more thus leading to less dense clouds. Cis-pinonic acid-ammonium sulfate aqueous solution was studied in order to relate the partitioning to more realistic atmospheric situation and to find out the combined effects of dissolution and partitioning behaviour. The results show that correct partitioning consideration alters the shape of the Köhler curve when compared to a situation in which the partitioning is neglected either completely or in the Raoult effect

    The role of surfactants in Köhler theory reconsidered

    Get PDF
    International audienceAtmospheric aerosol particles typically consist of inorganic salts and organic material. The inorganic compounds as well as their hygroscopic properties are well defined, but the effect of organic compounds on cloud droplet activation is still poorly characterized. The focus of the present study is the organic compounds that are surface active i.e. tend to concentrate on droplet surface and decrease the surface tension. Gibbsian surface thermodynamics was used to find out how partitioning between droplet surface and the bulk of the droplet affects the surface tension and the surfactant bulk concentration in droplets large enough to act as cloud condensation nuclei. Sodium dodecyl sulfate (SDS) was used together with sodium chloride to investigate the effect of surfactant partitioning on the Raoult effect (solute effect). While accounting for the surface to bulk partitioning is known to lead to lowered bulk surfactant concentration and thereby to increased surface tension compared to a case in which the partitioning is neglected, the present results show that the partitioning also alters the Raoult effect, and that the change is large enough to further increase the critical supersaturation and hence decrease cloud droplet activation. The fraction of surfactant partitioned to droplet surface increases with decreasing droplet size, which suggests that surfactants might enhance the activation of larger particles relatively more thus leading to less dense clouds. Cis-pinonic acid-ammonium sulfate aqueous solutions were studied in order to study the partitioning with compounds found in the atmosphere and to find out the combined effects of dissolution and partitioning behavior. The results show that the partitioning consideration presented in this paper alters the shape of the Köhler curve when compared to calculations in which the partitioning is neglected either completely or in the Raoult effect. In addition, critical supersaturation was measured for SDS particles with dry radii of 25-60nm using a static parallel plate Cloud Condensation Nucleus Counter. The experimentally determined critical supersaturations agree very well with theoretical calculations taking the surface to bulk partitioning fully into account and are much higher than those calculated neglecting the partitioning

    Electronic structure of small GaAs clusters

    Get PDF
    The electronic structure of small Ga_xAs_y clusters (x+y≤10) are calculated using the local density method. The calculation shows that even‐numbered clusters tend to be singlets, as opposed to odd‐numbered clusters which are open shell systems. This is in agreement with the experimental observations of even/odd alternations of the electron affinity and ionization potential. In the larger clusters, the atoms prefer an alternating bond arrangement; charge transfers are observed from Ga sites to As sites. This observation is also in agreement with recent chemisorption studies of ammonia on GaAs clusters. The close agreement between theoretical calculations and experimental results, together with the rich variation of electronic properties of GaAs clusters with composition makes GaAs clusters an ideal prototype system for the study of how electronic structure influences chemical reactivity

    New Rotation Periods in the Pleiades: Interpreting Activity Indicators

    Full text link
    We present results of photometric monitoring campaigns of G, K and M dwarfs in the Pleiades carried out in 1994, 1995 and 1996. We have determined rotation periods for 18 stars in this cluster. In this paper, we examine the validity of using observables such as X-ray activity and amplitude of photometric variations as indicators of angular momentum loss. We report the discovery of cool, slow rotators with high amplitudes of variation. This contradicts previous conclusions about the use of amplitudes as an alternate diagnostic of the saturation of angular momentum loss. We show that the X-ray data can be used as observational indicators of mass-dependent saturation in the angular momentum loss proposed on theoretical grounds

    The importance of clinical and labour market histories in psychiatric disability retirement : analysis of the comprehensive Finnish national-level RETIRE data

    Get PDF
    Objectives Despite the stable incidence of mental disorders in Finland and Europe, mental health-related occupational disability has been increasing. We unveiled the paths to permanent psychiatric disability, recovery, or death, by analysing sequences of labour market participation. Methods The RETIRE register database includes information regarding all persons (n = 42,170) awarded an ICD-10 psychiatric disability pension between 2010 and 2015 in Finland. We identified clusters of typical paths of pre-retirement labour market history. Controlling for major mental disorders, age, and sex, we evaluated factors associated with returning to work (RTW), or death, over a 5-year follow-up period. Results Only 10.5% of the disabled subjects returned to work within the follow-up. Half of them ended up with a permanent disability pension. Seven distinguishable paths to disability were identified. Subjects in the cluster characterized by steady employment were relatively often females, lost their work ability due to affective disorders, and had the highest rate of returning to work (16.3%). Mortality was highest (9%) among the cluster characterized by long-term unemployment. Distributions of major diagnostic groups, as well as age and sex, differed between clusters. After their adjustment in the analysis of RTW or death, the identified labour market history paths prior to losing work ability remained as important independent prognostic factors for both outcomes. Conclusions The complex retirement process involves identifiable clinical and contextual associating factors. Labour market history patterns associate with varying prognoses after psychiatric retirement. Prolonged unemployment appears as a predictor of relatively poor prognoses, whereas employment indicates the opposite.Peer reviewe

    Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer

    No full text
    International audienceThe study of the growth of nucleation-mode particles is important, as this prevents their loss through diffusion and allows them to reach sizes where they may become effective cloud condensation nuclei. Hyytiälä, a forested site in southern Finland, frequently experiences particle nucleation events during the spring and autumn, where particles first appear during the morning and continue to grow for several hours afterwards. As part of the QUEST 2 intensive field campaign during March and April 2003, an Aerodyne Aerosol Mass Spectrometer (AMS) was deployed alongside other aerosol instrumentation to study the particulate composition and dynamics of growth events and characterise the background aerosol. Despite the small mass concentrations, the AMS was able to distinguish the grown particles in the <100 nm regime several hours after an event and confirm that the particles were principally organic in composition. The AMS was also able to derive a mass spectral fingerprint for the organic species present, and found that it was consistent between events and independent of the mean particle diameter during non-polluted cases, implying the same species were also condensing onto the accumulation mode. The results were compared with those from offline analyses such as GC-MS and were consistent with the hypothesis that the main components were alkanes from plant waxes and the oxidation products of terpenes

    Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions

    Get PDF
    Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident blackbody radiation from sources at temperatures in the range 400 - 1600 {\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8 Figures

    Leisure-time physical activity, cardiorespiratory fitness and feelings of hopelessness in men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leisure-time physical activity (LTPA) and cardiorespiratory fitness contribute to mental health. Hopelessness has been linked to impaired mental health, cardiovascular events and mortality. Previous studies have focused on physical exercise and depression. We examined the associations of LTPA and cardiorespiratory fitness with feelings of hopelessness.</p> <p>Methods</p> <p>In this cross-sectional study leisure-time physical activity, maximal oxygen uptake (VO<sub>2max</sub>), hopelessness and cardiovascular risk factors were assessed in a population-based cohort of 2428 men aged 42 – 60 years old at baseline.</p> <p>Results</p> <p>Men feeling more hopeless about their future and reaching goals were less physically active, less fit and had a higher prevalence of many cardiovascular risk factors than men with lower levels of hopelessness. In a logistic regression model adjusted for age, smoking, alcohol consumption, cardiovascular disease and socioeconomic status, men engaging in less than 60 min/week of moderate-to-vigorous LTPA were 37% (95% CI 11 – 67%) more likely to feel hopeless than those engaging in at least 2.5 h/wk of LTPA. After further adjusting for elevated depressive symptoms the association of LTPA and hopelessness remained significant. VO<sub>2max </sub>was also associated with hopelessness, but not after adjustment for depressive symptoms.</p> <p>Conclusion</p> <p>Moderate and vigorous LTPA and cardiorespiratory fitness were inversely associated with hopelessness in these middle-aged men. These findings suggest that physical inactivity and poor cardiorespiratory fitness is an important associate of hopelessness, a distinct element of low subjective well-being.</p
    corecore