201 research outputs found

    Plume Characterization of a Typical South African Braai

    Get PDF
    To braai is part of the South African heritage that transcends ethnic barriers and socio-economic groups. In this paper, a comprehensive analysis of atmospheric gaseous and aerosol species within a plume originating from a typical South African braai is presented. Braai experiments were conducted at Welgegund – a comprehensively equipped regional background atmospheric air quality and climate change monitoring station. Five distinct phases were identified during the braai. Sulphur dioxide (SO2), nitrogen oxides(NOx) and carbonmonoxide (CO) increased significantly, while ozone (O3) did not increase notably. Aromatic and alkane volatile organic compounds were determined, with benzene exceeding the 2015 South African one-year ambient air quality limit. A comparison of atmospheric PM10 (particulate matter of an aerodynamic diameter ≤10 μm) concentrations with the 24-hour ambient limit indicated that PM10 is problematic during the meat grilling phase. From a climatic point of view, relatively high single scattering albedo (ωo) indicated a cooling aerosol direct effect, while periods with lowerωo coincided with peak black carbon (BC) emissions. The highest trace metal concentrations were associated with species typically present in ash. The lead (Pb) concentration was higher than the annual ambient air quality limit. Sulphate (SO4 2–), calcium (Ca2+) and magnesium (Mg2+) were the dominant water-soluble species present in the aerosols. The largest number of organic aerosol compounds was in the PM 2.5–1 fraction, which also had the highest semi-quantified concentration. The results indicated that a recreational braai does not pose significant health risks. However, the longer exposure periods that are experienced by occupational vendors, will significantly increase health risks.KEYWORDS Braai (barbeque), atmospheric gaseous species, aerosols, atmospheric organic compounds, optical properties, chemical properties

    Peer review quality and transparency of the peer-review process in open access and subscription journals

    Get PDF
    BACKGROUND:Recent controversies highlighting substandard peer review in Open Access (OA) and traditional (subscription) journals have increased the need for authors, funders, publishers, and institutions to assure quality of peer-review in academic journals. I propose that transparency of the peer-review process may be seen as an indicator of the quality of peer-review, and develop and validate a tool enabling different stakeholders to assess transparency of the peer-review process. METHODS AND FINDINGS:Based on editorial guidelines and best practices, I developed a 14-item tool to rate transparency of the peer-review process on the basis of journals' websites. In Study 1, a random sample of 231 authors of papers in 92 subscription journals in different fields rated transparency of the journals that published their work. Authors' ratings of the transparency were positively associated with quality of the peer-review process but unrelated to journal's impact factors. In Study 2, 20 experts on OA publishing assessed the transparency of established (non-OA) journals, OA journals categorized as being published by potential predatory publishers, and journals from the Directory of Open Access Journals (DOAJ). Results show high reliability across items (α = .91) and sufficient reliability across raters. Ratings differentiated the three types of journals well. In Study 3, academic librarians rated a random sample of 140 DOAJ journals and another 54 journals that had received a hoax paper written by Bohannon to test peer-review quality. Journals with higher transparency ratings were less likely to accept the flawed paper and showed higher impact as measured by the h5 index from Google Scholar. CONCLUSIONS:The tool to assess transparency of the peer-review process at academic journals shows promising reliability and validity. The transparency of the peer-review process can be seen as an indicator of peer-review quality allowing the tool to be used to predict academic quality in new journals

    A Functional Variant of the Dimethylarginine Dimethylaminohydrolase-2 Gene Is Associated with Insulin Sensitivity

    Get PDF
    Background: Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide synthase, which was associated with insulin resistance. Dimethylarginine dimethylaminohydrolase (DDAH) is the major determinant of plasma ADMA. Examining data from the DIAGRAM+ (Diabetes Genetics Replication And Meta-analysis), we identified a variant (rs9267551) in the DDAH2 gene nominally associated with type 2 diabetes (P =3610 25). Methodology/Principal Findings: initially, we assessed the functional impact of rs9267551 in human endothelial cells (HUVECs), observing that the G allele had a lower transcriptional activity resulting in reduced expression of DDAH2 and decreased NO production in primary HUVECs naturally carrying it. We then proceeded to investigate whether this variant is associated with insulin sensitivity in vivo. To this end, two cohorts of nondiabetic subjects of European ancestry were studied. In sample 1 (n = 958) insulin sensitivity was determined by the insulin sensitivity index (ISI), while in sample 2 (n = 527) it was measured with a euglycemic-hyperinsulinemic clamp. In sample 1, carriers of the GG genotype had lower ISI than carriers of the C allele (67633 vs.79644; P = 0.003 after adjusting for age, gender, and BMI). ADMA levels were higher in subjects carrying the GG genotype than in carriers of the C allele (0.6860.14 vs. 0.5760.14 mmol/l; P = 0.04). In sample 2, glucose disposal was lower in GG carriers as compared with C carriers (9.364.1 vs. 11.064.2 mg6Kg 21 free fat mass6min 21; P = 0.009)

    Triacylglycerol Fatty Acid Composition in Diet-Induced Weight Loss in Subjects with Abnormal Glucose Metabolism – the GENOBIN Study

    Get PDF
    BACKGROUND: The effect of weight loss on different plasma lipid subclasses at the molecular level is unknown. The aim of this study was to examine whether a diet-induced weight reduction result in changes in the extended plasma lipid profiles (lipidome) in subjects with features of metabolic syndrome in a 33-week intervention. METHODOLOGY/PRINCIPAL FINDINGS: Plasma samples of 9 subjects in the weight reduction group and 10 subjects in the control group were analyzed using mass spectrometry based lipidomic and fatty acid analyses. Body weight decreased in the weight reduction group by 7.8+/-2.9% (p<0.01). Most of the serum triacylglycerols and phosphatidylcholines were reduced. The decrease in triacylglycerols affected predominantly the saturated short chain fatty acids. This decrease of saturated short chain fatty acid containing triacylglycerols correlated with the increase of insulin sensitivity. However, levels of several longer chain fatty acids, including arachidonic and docosahexanoic acid, were not affected by weight loss. Levels of other lipids known to be associated with obesity such as sphingolipids and lysophosphatidylcholines were not altered by weight reduction. CONCLUSIONS/SIGNIFICANCE: Diet-induced weight loss caused significant changes in global lipid profiles in subjects with abnormal glucose metabolism. The observed changes may affect insulin sensitivity and glucose metabolism in these subjects. TRIAL REGISTRATION: ClinicalTrials.gov NCT00621205

    Whole Grain Products, Fish and Bilberries Alter Glucose and Lipid Metabolism in a Randomized, Controlled Trial: The Sysdimet Study

    Get PDF
    Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism.Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1) whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group), (2) Whole grain enriched diet (WGED) group, which includes principally the same grain products as group (1), but with no change in fish or berry consumption, and (3) refined wheat breads (Control). Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3) long-chain PUFAs increased (False Discovery Rate p-values <0.05). Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3) PUFA.The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a beneficial effect in the efforts to prevent type 2 diabetes in high risk persons.ClinicalTrials.gov NCT00573781

    Earth: Atmospheric Evolution of a Habitable Planet

    Full text link
    Our present-day atmosphere is often used as an analog for potentially habitable exoplanets, but Earth's atmosphere has changed dramatically throughout its 4.5 billion year history. For example, molecular oxygen is abundant in the atmosphere today but was absent on the early Earth. Meanwhile, the physical and chemical evolution of Earth's atmosphere has also resulted in major swings in surface temperature, at times resulting in extreme glaciation or warm greenhouse climates. Despite this dynamic and occasionally dramatic history, the Earth has been persistently habitable--and, in fact, inhabited--for roughly 4 billion years. Understanding Earth's momentous changes and its enduring habitability is essential as a guide to the diversity of habitable planetary environments that may exist beyond our solar system and for ultimately recognizing spectroscopic fingerprints of life elsewhere in the Universe. Here, we review long-term trends in the composition of Earth's atmosphere as it relates to both planetary habitability and inhabitation. We focus on gases that may serve as habitability markers (CO2, N2) or biosignatures (CH4, O2), especially as related to the redox evolution of the atmosphere and the coupled evolution of Earth's climate system. We emphasize that in the search for Earth-like planets we must be mindful that the example provided by the modern atmosphere merely represents a single snapshot of Earth's long-term evolution. In exploring the many former states of our own planet, we emphasize Earth's atmospheric evolution during the Archean, Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of potential atmospheric trajectories into the distant future, many millions to billions of years from now. All of these 'Alternative Earth' scenarios provide insight to the potential diversity of Earth-like, habitable, and inhabited worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook of Exoplanet

    Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use

    Get PDF
    BACKGROUND: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk. METHODS: We analyzed similar to 250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci. RESULTS: Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals. CONCLUSIONS: Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.Peer reviewe

    Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci

    Get PDF
    Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations withP <5 x 10(-8)in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P <5 x 10(-8)) in the discovery samples. Ten novel SNVs, including rs12616219 nearTMEM182, were followed-up and five of them (rs462779 inREV3L, rs12780116 inCNNM2, rs1190736 inGPR101, rs11539157 inPJA1, and rs12616219 nearTMEM182) replicated at a Bonferroni significance threshold (P <4.5 x 10(-3)) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, inCCDC141and two low-frequency SNVs inCEP350andHDGFRP2. Functional follow-up implied that decreased expression ofREV3Lmay lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.Peer reviewe

    How do high glycemic load diets influence coronary heart disease?

    Get PDF

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe
    corecore