464 research outputs found
Variational Deep Semantic Hashing for Text Documents
As the amount of textual data has been rapidly increasing over the past
decade, efficient similarity search methods have become a crucial component of
large-scale information retrieval systems. A popular strategy is to represent
original data samples by compact binary codes through hashing. A spectrum of
machine learning methods have been utilized, but they often lack expressiveness
and flexibility in modeling to learn effective representations. The recent
advances of deep learning in a wide range of applications has demonstrated its
capability to learn robust and powerful feature representations for complex
data. Especially, deep generative models naturally combine the expressiveness
of probabilistic generative models with the high capacity of deep neural
networks, which is very suitable for text modeling. However, little work has
leveraged the recent progress in deep learning for text hashing.
In this paper, we propose a series of novel deep document generative models
for text hashing. The first proposed model is unsupervised while the second one
is supervised by utilizing document labels/tags for hashing. The third model
further considers document-specific factors that affect the generation of
words. The probabilistic generative formulation of the proposed models provides
a principled framework for model extension, uncertainty estimation, simulation,
and interpretability. Based on variational inference and reparameterization,
the proposed models can be interpreted as encoder-decoder deep neural networks
and thus they are capable of learning complex nonlinear distributed
representations of the original documents. We conduct a comprehensive set of
experiments on four public testbeds. The experimental results have demonstrated
the effectiveness of the proposed supervised learning models for text hashing.Comment: 11 pages, 4 figure
Fusion of radioactive Sn with Ni
Evaporation residue and fission cross sections of radioactive Sn on
Ni were measured near the Coulomb barrier. A large sub-barrier fusion
enhancement was observed. Coupled-channel calculations including inelastic
excitation of the projectile and target, and neutron transfer are in good
agreement with the measured fusion excitation function. When the change in
nuclear size and shift in barrier height are accounted for, there is no extra
fusion enhancement in Sn+Ni with respect to stable Sn+Ni.
A systematic comparison of evaporation residue cross sections for the fusion of
even Sn and Sn with Ni is presented.Comment: 9 pages, 11 figure
Zero-Shot Hashing via Transferring Supervised Knowledge
Hashing has shown its efficiency and effectiveness in facilitating
large-scale multimedia applications. Supervised knowledge e.g. semantic labels
or pair-wise relationship) associated to data is capable of significantly
improving the quality of hash codes and hash functions. However, confronted
with the rapid growth of newly-emerging concepts and multimedia data on the
Web, existing supervised hashing approaches may easily suffer from the scarcity
and validity of supervised information due to the expensive cost of manual
labelling. In this paper, we propose a novel hashing scheme, termed
\emph{zero-shot hashing} (ZSH), which compresses images of "unseen" categories
to binary codes with hash functions learned from limited training data of
"seen" categories. Specifically, we project independent data labels i.e.
0/1-form label vectors) into semantic embedding space, where semantic
relationships among all the labels can be precisely characterized and thus seen
supervised knowledge can be transferred to unseen classes. Moreover, in order
to cope with the semantic shift problem, we rotate the embedded space to more
suitably align the embedded semantics with the low-level visual feature space,
thereby alleviating the influence of semantic gap. In the meantime, to exert
positive effects on learning high-quality hash functions, we further propose to
preserve local structural property and discrete nature in binary codes.
Besides, we develop an efficient alternating algorithm to solve the ZSH model.
Extensive experiments conducted on various real-life datasets show the superior
zero-shot image retrieval performance of ZSH as compared to several
state-of-the-art hashing methods.Comment: 11 page
3D printing fluorescent material with tunable optical properties
The 3D printing of fluorescent materials could help develop, validate, and translate imaging technologies, including systems for fluorescence-guided surgery. Despite advances in 3D printing techniques for optical targets, no comprehensive method has been demonstrated for the simultaneous incorporation of fluorophores and fine-tuning of absorption and scattering properties. Here, we introduce a photopolymer-based 3D printing method for manufacturing fluorescent material with tunable optical properties. The results demonstrate the ability to 3D print various individual fluorophores at reasonably high fluorescence yields, including IR-125, quantum dots, methylene blue, and rhodamine 590. Furthermore, tuning of the absorption and reduced scattering coefficients is demonstrated within the relevant mamalian soft tissue coefficient ranges of 0.005–0.05 mm−1 and 0.2–1.5 mm−1, respectively. Fabrication of fluorophore-doped biomimicking and complex geometric structures validated the ability to print feature sizes less than 200 μm. The presented methods and optical characterization techniques provide the foundation for the manufacturing of solid 3D printed fluorescent structures, with direct relevance to biomedical optics and the broad adoption of fast manufacturing methods in fluorescence imaging
Phase Decomposition and Chemical Inhomogeneity in Nd2-xCexCuO4
Extensive X-ray and neutron scattering experiments and additional
transmission electron microscopy results reveal the partial decomposition of
Nd2-xCexCuO4 (NCCO) in a low-oxygen-fugacity environment such as that typically
realized during the annealing process required to create a superconducting
state. Unlike a typical situation in which a disordered secondary phase results
in diffuse powder scattering, a serendipitous match between the in-plane
lattice constant of NCCO and the lattice constant of one of the decomposition
products, (Nd,Ce)2O3, causes the secondary phase to form an oriented,
quasi-two-dimensional epitaxial structure. Consequently, diffraction peaks from
the secondary phase appear at rational positions (H,K,0) in the reciprocal
space of NCCO. Additionally, because of neodymium paramagnetism, the
application of a magnetic field increases the low-temperature intensity
observed at these positions via neutron scattering. Such effects may mimic the
formation of a structural superlattice or the strengthening of
antiferromagnetic order of NCCO, but the intrinsic mechanism may be identified
through careful and systematic experimentation. For typical reduction
conditions, the (Nd,Ce)2O3 volume fraction is ~1%, and the secondary-phase
layers exhibit long-range order parallel to the NCCO CuO2 sheets and are 50-100
angstromsthick. The presence of the secondary phase should also be taken into
account in the analysis of other experiments on NCCO, such as transport
measurements.Comment: 15 pages, 17 figures, submitted to Phys. Rev.
Fragment Production in Non-central Collisions of Intermediate Energy Heavy Ions
The defining characteristics of fragment emission resulting from the
non-central collision of 114Cd ions with 92Mo target nuclei at E/A = 50 MeV are
presented. Charge correlations and average relative velocities for mid-velocity
fragment emission exhibit significant differences when compared to standard
statistical decay. These differences associated with similar velocity
dissipation are indicative of the influence of the entrance channel dynamics on
the fragment production process
Interplay of initial deformation and Coulomb proximity on nuclear decay
Alpha particles emitted from an excited projectile-like fragment (PLF*)
formed in a peripheral collision of two intermediate-energy heavy ions exhibit
a strong preference for emission towards the target-like fragment (TLF). The
interplay of the initial deformation of the PLF* caused by the reaction,
Coulomb proximity, and the rotation of the PLF* results in the observed
anisotropic angular distribution. Changes in the shape of the angular
distribution with excitation energy are interpreted as being the result of
forming more elongated initial geometries in the more peripheral collisions.Comment: 4 figure
Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich Sn on Ni
Evaporation residue cross sections have been measured with neutron-rich
radioactive Sn beams on Ni in the vicinity of the Coulomb
barrier. The average beam intensity was particles per second
and the smallest cross section measured was less than 5 mb. Large subbarrier
fusion enhancement was observed. Coupled-channels calculations taking into
account inelastic excitation and neutron transfer underpredict the measured
cross sections below the barrier.Comment: 4 pages including 1 table and 3 figure
- …