384 research outputs found
The Effect of Shape Familiarity on Object-Based Attention
Thesis advisor: Sean MacEvoyHumans can pay attention both to particular locations in space (“space-based attention”) and to specific objects (“object-based attention”). The goal of this study was to understand the role of object familiarity and complexity in the control of object-based attention. We used a well-known manifestation of object-based attention known as same-object advantage (SOA) to test this. In SOA, participants are faster at detecting a target event that takes place in a cued object than one that takes place in an uncued object, even when the distance between cue and target is kept fixed. To control shape familiarity, objects in the current study were randomly-generated irregular polygons known as Attneave shapes. Experiment 1 showed that SOA exists for these irregular shapes, even when participants are unfamiliar with them. In Experiment 2, participants first underwent training designed to familiarize them with a subset of the Attneave shapes used in Experiment 1. Again there was a significant SOA. If object-based attention is dependent upon object familiarity, we hypothesized that SOA, measured in terms of reaction time, should be greater in Experiment 2 than Experiment 1. Although there was a numerical increase in the reaction time signature of SOA in Experiment 2, this effect was not significant. While this does not strictly support our hypothesis, several aspects of this study suggest that object familiarity does play some role in mediating object-based attention.Thesis (BS) — Boston College, 2013.Submitted to: Boston College. College of Arts and Sciences.Discipline: Psychology Honors Program.Discipline: Psychology
Superanalogs of the Calogero operators and Jack polynomials
A depending on a complex parameter superanalog
of Calogero operator is constructed; it is related with the root system of the
Lie superalgebra . For we obtain the usual Calogero
operator; for we obtain, up to a change of indeterminates and parameter
the operator constructed by Veselov, Chalykh and Feigin [2,3]. For the operator is the radial part of the 2nd
order Laplace operator for the symmetric superspaces corresponding to pairs
and , respectively. We will show
that for the generic and the superanalogs of the Jack polynomials
constructed by Kerov, Okunkov and Olshanskii [5] are eigenfunctions of
; for they coinside with the spherical
functions corresponding to the above mentioned symmetric superspaces. We also
study the inner product induced by Berezin's integral on these superspaces
Interrelationships Within the Bacterial Flora of the Female Genital Tract
Analysis of 240 consecutive vaginal swabs using the compatibility profile technique revealed that only 2 bacteria have the ability to be a sole isolate and as such a candidate to be a major aerobic regulator of the bacterial flora of the female genital tract (BFFGT). Compatibility profiles of Lactobacillus and Gardnerella vaginalis have shown that these organisms shared compatibility profiling for the majority of the normal bacterial constituents of the female genital tract. Dominance disruption appears to come from the addition of compatible co-isolates and presumed loss of numerical superiority. These phenomena appear to be the keys to reregulation of BFFGT. Lactobacillus appears to be the major regulator of both G. vaginalis and anaerobic bacteria. When additional organisms are added to the bacterial flora, they may add to or partially negate the inhibitory influence of Lactobacillus on the BFFGT. Inhibitor interrelationships appear to exist between coagulase-negative staphylococci and Staphylococcus aureus and the group B streptococci (GBS) and other beta hemolytic streptococci. Facilitating interrelationships appear to exist between S. aureus and the GBS and selected Enterobacteriaceae
A Comparison of Noninvasive Techniques to Survey Carnivore Communities in Northeastern North America
How a bird is an island
Replicate adaptive radiations occur when lineages repeatedly radiate and fill new but similar niches and converge phenotypically. While this is commonly seen in traditional island systems, it may also be present in host-parasite relationships, where hosts serve as islands. In a recent article in BMC Biology, Johnson and colleagues have produced the most extensive phylogeny of the avian lice (Ischnocera) to date, and find evidence for this pattern. This study opens the door to exploring adaptive radiations from a novel host-parasite perspective
Integrating snow science and wildlife ecology in Arctic-boreal North America
Snow covers Arctic and boreal regions (ABRs) for approximately 9 months of the year, thus snowscapes dominate the form and function of tundra and boreal ecosystems. In recent decades, Arctic warming has changed the snowcover\u27s spatial extent and distribution, as well as its seasonal timing and duration, while also altering the physical characteristics of the snowpack. Understanding the little studied effects of changing snowscapes on its wildlife communities is critical. The goal of this paper is to demonstrate the urgent need for, and suggest an approach for developing, an improved suite of temporally evolving, spatially distributed snow products to help understand how dynamics in snowscape properties impact wildlife, with a specific focus on Alaska and northwestern Canada. Via consideration of existing knowledge of wildlife-snow interactions, currently available snow products for focus region, and results of three case studies, we conclude that improving snow science in the ABR will be best achieved by focusing efforts on developing data-model fusion approaches to produce fit-for-purpose snow products that include, but are not limited to, wildlife ecology. The relative wealth of coordinated in situ measurements, airborne and satellite remote sensing data, and modeling tools being collected and developed as part of NASA\u27s Arctic Boreal Vulnerability Experiment and SnowEx campaigns, for example, provide a data rich environment for developing and testing new remote sensing algorithms and retrievals of snowscape properties
Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis
Context: Landscape metrics represent powerful tools for quantifying landscape structure, but uncertainties persist around their interpretation. Urban settings add unique considerations, containing habitat structures driven by the surrounding built-up environment. Understanding urban ecosystems, however, should focus on the habitats rather than the matrix. Objectives: We coupled a multivariate approach with landscape metric analysis to overcome existing shortcomings in interpretation. We then explored relationships between landscape characteristics and modelled ecosystem service provision. Methods: We used principal component analysis and cluster analysis to isolate the most effective measures of landscape variability and then grouped habitat patches according to their attributes, independent of the surrounding urban form. We compared results to the modelled provision of three ecosystem services. Seven classes resulting from cluster analysis were separated primarily on patch area, and secondarily by measures of shape complexity and inter-patch distance. Results: When compared to modelled ecosystem services, larger patches up to 10 ha in size consistently stored more carbon per area and supported more pollinators, while exhibiting a greater risk of soil erosion. Smaller, isolated patches showed the opposite, and patches larger than 10 ha exhibited no additional areal benefit. Conclusions: Multivariate landscape metric analysis offers greater confidence and consistency than analysing landscape metrics individually. Independent classification avoids the influence of the urban matrix surrounding habitats of interest, and allows patches to be grouped according to their own attributes. Such a grouping is useful as it may correlate more strongly with the characteristics of landscape structure that directly affect ecosystem function
Effects of body size on estimation of mammalian area requirements.
Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied blockcross validation to quantify bias in empirical home range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changedsubstantially at the upper end of the mass spectrum
A comprehensive analysis of autocorrelation and bias in home range estimation
Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman´s rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal´s movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados UnidosFil: Tucker, Marlee A.. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados UnidosFil: Akre, Thomas S.. National Zoological Park; Estados UnidosFil: Alberts, Susan C.. University of Duke; Estados UnidosFil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; KeniaFil: Altmann, Jeanne. University of Princeton; Estados UnidosFil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; BrasilFil: Belant, Jerrold L.. State University of New York; Estados UnidosFil: Beyer, Dean. Universitat Phillips; AlemaniaFil: Blaum, Niels. Universitat Potsdam; AlemaniaFil: Böhning Gaese, Katrin. Senckenberg Gesellschaft Für Naturforschung; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Cullen Jr., Laury. Instituto de Pesquisas Ecológicas; BrasilFil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; BrasilFil: Dekker, Jasja. Jasja Dekker Dierecologie; Países BajosFil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados UnidosFil: Farwig, Nina. Michigan State University; Estados UnidosFil: Fichtel, Claudia. German Primate Center; AlemaniaFil: Fischer, Christina. Universitat Technical Zu Munich; AlemaniaFil: Ford, Adam T.. University of British Columbia; CanadáFil: Goheen, Jacob R.. University of Wyoming; Estados UnidosFil: Janssen, René. Bionet Natuuronderzoek; Países BajosFil: Jeltsch, Florian. Universitat Potsdam; AlemaniaFil: Kauffman, Matthew. University Of Wyoming; Estados UnidosFil: Kappeler, Peter M.. German Primate Center; AlemaniaFil: Koch, Flávia. German Primate Center; AlemaniaFil: LaPoint, Scott. Max Planck Institute für Ornithologie; Alemania. Columbia University; Estados UnidosFil: Markham, A. Catherine. Stony Brook University; Estados UnidosFil: Medici, Emilia Patricia. Instituto de Pesquisas Ecológicas (IPE) ; BrasilFil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; BrasilFil: Nathan, Ran. The Hebrew University of Jerusalem; IsraelFil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados UnidosFil: Patterson, Bruce. Field Museum of National History; Estados UnidosFil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel Mamirauá; BrasilFil: Rösner, Sascha. Michigan State University; Estados UnidosFil: Schabo, Dana G.. Michigan State University; Estados UnidosFil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; BrasilFil: Spiegel, Orr. Universitat Tel Aviv; IsraelFil: Thompson, Peter. University of Maryland; Estados UnidosFil: Ullmann, Wiebke. Universitat Potsdam; AlemaniaFil: Ziḝba, Filip. Tatra National Park; PoloniaFil: Zwijacz Kozica, Tomasz. Tatra National Park; PoloniaFil: Fagan, William F.. University of Maryland; Estados UnidosFil: Mueller, Thomas. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unido
- …