6 research outputs found

    Intrusive and depositional constraints on the Cretaceous tectonic history of the southern Blue Mountains, eastern Oregon

    Full text link
    © 2016 Geological Society of America. We present an integrated study of the postcollisional (post-Late Jurassic) history of the Blue Mountains province (Oregon and Idaho, USA) using constraints from Cretaceous igneous and sedimentary rocks. The Blue Mountains province consists of the Wallowa and Olds Ferry arcs, separated by forearc accretionary material of the Baker terrane. Four plutons (Lookout Mountain, Pedro Mountain, Amelia, Tureman Ranch) intrude along or near the Connor Creek fault, which separates the Izee and Baker terranes. High-precision U-Pb zircon ages indicate 129.4-123.8 Ma crystallization ages and exhibit a north-northeast-younging trend of the magmatism. The40Ar/39Ar analyses on biotite and hornblende indicate very rapid ( < 1 m.y.) cooling below biotite closure temperature (~350 °C) for the plutons. The (U-Th)/He zircon analyses were done on a series of regional plutons, including the Lookout Mountain and Tureman Ranch plutons, and indicate a middle Cretaceous age of cooling through ~200 °C. Sr, Nd, and Pb isotope geochemistry on the four studied plutons confirms that the Izee terrane is on Olds Ferry terrane basement. We also present data from detrital zircons from Late Cretaceous sedimentary rocks at Dixie Butte, Oregon. These detrital zircons record only Paleozoic-Mesozoic ages with only juvenile Hf isotopic compositions, indicating derivation from juvenile accreted terrane lithosphere. Although the Blue Mountains province is juxtaposed against cratonic North America along the western Idaho shear zone, it shows trends in magmatism, cooling, and sediment deposition that differ from the adjacent part of North America and are consistent with a more southern position for terranes of this province at the time of their accretion. We therefore propose a tectonic history involving moderate northward translation of the Blue Mountains province along the western Idaho shear zone in the middle Cretaceous

    Geochemistry of Sandstones from the Upper Cretaceous Sillakkudi Formation, Cauvery Basin, Southern India: Implication for Provenance

    Get PDF
    Major, trace and rare earth elements (REE) composition of sandstones from the Upper Cretaceous Sillakkudi Formation, Ariyalur Group, Cauvery Basin were studied to decipher their weathering and provenance history. Texturally, these sandstones are immature, poorly sorted and grain supported. Abundance of feldspars especially, plagioclase indicates rapid deposition of sediments from a nearby source rocks. Using the geochemical classification diagram the Sillakkudi sandstones are classified as fe-sand, quartz arenite, litharenite, sub-litharenite, sub-arkose, arkose, and wacke types,which is also supported by the petrography study. The transition trace elements like Co, Ni, and V are higher in theSillakkudi sandstones than upper continental crust (UCC) values. However, the Sillakkudi sandstones are lower in Cr (mean ~21) content than average UCC value (~ 35). The poor correlation between Cr and Ni (r = 0.08, number of samples n = 20) imply that these sandstones were derived from felsic source rocks. Similarly, the Eu/Eu* (0.35-1.73), La/Sc (1.93-9.36), Th/Sc (0.41-6.57), Th/Co (0.14-5.01), Th/Cr (0.23-2.94), and Cr/Th (0.34-4.28) ratios support a felsic source for the Sillakkudi sandstones.The significant enrichment of Zr, Hf, and Th in fe-sand, sub-arkose and litharenite could be related to the presence of heavy minerals, especially zircon. However, the zircon geochemistry did not affectthe REE distribution and its patterns in the Sillakkudi sandstones. The Chondrite normalized REE patterns of Sillakkudi sandstones are characterized by relatively flat HREE (Gd/YbCN = ~ 0.73-2.41; subscript CN refers to chondrite normalized value), enriched LREE (La/SmCN = ~ 3.39-5.82) and negative Eu anomaly (mean value Eu/Eu* = 0.80). The Gd/YbCN ratios (~0.73-2.50) are less than 2.5, which suggest that these Sillakkudi sandstones were derived from the less HREE depleted source rocks. The comparison of REE patterns and its Eu anomalies to the source rocks reveals that the Sillakkudi sandstones received a major contribution of sediments from Dharwar craton
    corecore