3 research outputs found

    Optimization of laser ablation and signal enhancement for nuclear material detection

    No full text
    The purpose of the study was to investigate the role of different laser parameters on laser ablation properties, specifically in terms of performance in laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Many laser parameters affect laser ablation performance, including laser wavelength and pulse duration, as presented here. It was previously thought that wavelength plays no role in ultrafast laser ablation; however, it was found that shorter wavelength yields lower detection limits and ablation threshold. Our results also demonstrate that in the laser pulse duration range of 40 fs to 1 ps, negligible differences occur in signal intensity, elemental ratios, and detection limits. U/Pb and U/Th ratios, which were examined to ensure limited fractionation, give comparable results at all pulse widths investigated. A parametric study of plasma hydrodynamics will also be presented. An elemental detection method combining laser induced breakdown spectroscopy (LIBS) and LA-ICP-MS is developed, with plasma density and temperature actively monitored to investigate how plasma conditions affect ICP-MS results. The combination of these two methods will help to mitigate the disadvantages of using each technique individually. Depth and spatial analysis of thin films was performed using femtosecond LA-ICP-MS to study the stoichiometric distribution of the films. The thin film-substrate interface was probed, revealing intermixing between the two layers. Lastly, the persistence of uranium emission in laser-produced plasmas (LPP) was investigated under various Ar ambient environments. Plasma collisional effects and confinement play a very important role in emission intensity and persistence, yielding important results for future LIBS and laser absorption spectroscopy (LAS) research. Lastly, suggestions for future work are made, which include extension of the LIBS and LA-ICP-MS systems to other samples like oxide thin films and spatial and depth profiling of known heterogeneous materials

    Femtosecond laser ablation-based mass spectrometry: An ideal tool for stoichiometric analysis of thin films

    No full text
    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T′-La2CuO4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations

    A Framework for the Initial Occupation of the Americas

    No full text
    corecore