41 research outputs found

    In Situ Scanning Transmission Electron Microscopy of Ni Nanoparticle Redispersion via the Reduction of Hollow NiO

    Get PDF
    Oxidation and reduction cycles are used in the regeneration of nanoparticle catalysts that have deactivated due to sintering or poisoning. Nickel oxidation and reduction cycles for the redispersion of nickel nanoparticles were studied via in situ high angle annular dark field environmental scanning transmission electron microscopy. Cycling the Ni/NiO system through successive redox cycles shows that the particles retain the same general size distributions even though Ostwald ripening and particle migration and coalescence is occurring. The regeneration of the smallest nanoparticle sizes, which disappear due to sintering processes, occur by the ejection of small (2−3 nm) nickel particles during the reduction of the hollow nickel oxide nanostructures. The nickel nanoparticles above ∼3.5 nm in size form hollow polycrystalline nickel oxide nanostructures upon oxidation. Upon reduction, the grains making up the shell of the hollow nickel oxide reduce separately at the grains surface and at the grain boundaries between the polycrystalline grains. The contraction in particle size upon reduction destabilizes the hollow nanostructure and causes the particle to rearrange and collapse. As this process occurs, some parts of the material are ejected from the reducing particle and forms small particles of nickel, which regenerate the smallest parts of the size distribution. Once the particle collapses, the nickel rearranges, reforming solid nickel nanoparticles enclosed by low index facets

    Zn doped iron oxide nanoparticles with high magnetization and photothermal efficiency for cancer treatment

    Get PDF
    Magnetic nanoparticles (NPs) are powerful agents to induce hyperthermia in tumours upon the application of an alternating magnetic field or an infrared laser. Dopants have been investigated to alter different properties of materials. Herein, the effect of zinc doping into iron oxide NPs on their magnetic properties and structural characteristics has been investigated in-depth. A high temperature reaction with autogenous pressure was used to prepare iron oxide and zinc ferrite NPs of same size and morphology for direct comparison. Pressure was key in obtaining high quality nanocrystals with reduced lattice strain (27% less) and enhanced magnetic properties. Zn_{0.4}Fe_{2.6}O_{4} NPs. with small size of 10.2 ± 2.5 nm and very high saturation magnetisation of 142 ± 9 emu g_{Fe+Zn}^{−1} were obtained. Aqueous dispersion of the NPs showed long term magnetic (up to 24 months) and colloidal stability (at least 6 d) at physiologically mimicking conditions. The samples had been kept in the fridge and had been stable for four years. The biocompatibility of Zn_{0.4}Fe_{2.6}O_{4} NPs was next evaluated by metabolic activity, membrane integrity and clonogenic assays, which show an equivalence to that of iron oxide NPs. Zinc doping decreased the bandgap of the material by 22% making it a more efficient photothermal agent than iron oxide-based ones. Semiconductor photo-hyperthermia was shown to outperform magneto-hyperthermia in cancer cells, reaching the same temperature 17 times faster whilst using 20 times less material (20 mg_{Fe+Zn} ml^{−1}vs. 1 mg_{Fe+Zn} ml^{−1}). Magnetothermal conversion was minimally hindered in the cellular confinement whilst photothermal efficiency remained unchanged. Photothermia treatment alone achieved 100% cell death after 10 min of treatment compared to only 30% cell death achieved with magnetothermia at clinically relevant settings for each at their best performing concentration. Altogether, these results suggest that the biocompatible and superparamagnetic zinc ferrite NPs could be a next biomaterial of choice for photo-hyperthermia, which could outperform current iron oxide NPs for magnetic hyperthermia

    Room-temperature emitters in wafer-scale few-layer hBN by atmospheric pressure CVD

    Get PDF
    Hexagonal boron nitride (hBN) is a two-dimensional, wide band gap semiconductor material suitable for several technologies. 2D hBN appeared as a viable platform to produce bright and optically stable single photon emitters (SPEs) at room temperature, which are in demand for quantum technologies. In this context, one main challenge concerns the upscaling of 2D hBN with uniform spatial and spectral distribution of SPE sources. In this work we optimized the atmospheric-pressure chemical vapor deposition (APCVD) growth and obtained large-area 2D hBN with uniform fluorescence emission properties. We characterized the hBN films by a combination of electron microscopy, Raman and X-ray photoelectron spectroscopy techniques. The extensive characterization revealed few-layer, polycrystalline hBN films (∼3 nm thickness) with balanced stoichiometry and uniformity over 2″ wafer scale. We studied the fluorescence emission properties of the hBN films by multidimensional hyperspectral fluorescence microscopy. We measured simultaneously the spatial position, intensity, and spectral properties of the emitters, which were exposed to continuous illumination over minutes. Three main emission peaks (at 538, 582, and 617 nm) were observed, with associated replica peaks red-shifted by ∼53 nm. A surface emitter density of ∼0.1 emitters/μm2 was found. A comparative test with pristine hBN nanosheets produced by liquid-phase exfoliation (LPE) was performed, finding that CVD and LPE hBN possess analogous spectral emitter categories in terms of peak position/intensity and density. Overall, the line-shape and wavelength of the emission peaks, as well as the other measured features, are consistent with single-photon emission from hBN. The results indicate that APCVD hBN might proficiently serve as a SPE platform for quantum technologies.We acknowledge the financial support of i) the project “GEMIS – Graphene-enhanced Electro Magnetic Interference Shielding,” with the reference POCI-01-0247-FEDER-045939, co-funded by COMPETE 2020 – Operational Programme for Competitiveness and Internationalization and FCT –Science and Technology Foundation, under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); ii) the project "Graphene and novel thin films for super-resolution microscopy and bio-sensing" (PTDC/NAN-OPT/29417/2017) financed by ERDF, through the Competitiveness and Internationalization Operational Program (POCI) by Portugal 2020 and by the Portuguese Foundation for Science and Technology (FCT) with references POCI-01-0145-FEDER-029417 and PTDC/NAN-OPT/29417/2017; iii) the FCT in the framework of the Strategic Funding UIDB/04650/2020. One of the authors (T.Q.) acknowledges the FCT financial support under the Quantum Portugal Initiative Ph.D. scholarship SFRH/BD/150646/2020. We acknowledge the support by the INL AEMIS, Micro- and Nanofabrication, and Nanophotonics and Bioimaging research core facilities

    the role of adenosine monophosphate

    Get PDF
    Funding Information: The authors acknowledge financial support from the European Innovation Council (Horizon 2020 Project: 965018—BIOCELLPHE), the MCIN/AEI/10.13039/501100011033 (grant PID2019-108954RB-I00), the FSE (“El FSE invierte en tu futuro”), the Xunta de Galicia/FEDER (grant GRC ED431C 2020/09), the European Regional Development Fund (ERDF), and the Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior, FCT-MCTES (grants UIDB/50006/2020, UIDP/50006/2020 and Met4cat, EXPL/QUI-COL/0263/2021). J. F.-L. thanks FCT-UNL for the research contract through the Program DL 57/2016−Norma Transitória. S. N. thanks the FCT-MCTES Portugal for her doctoral grant associated with the Chemistry PhD program (SFRH/BD/144618/2019). C. F.-L. acknowledges Xunta de Galicia for a predoctoral scholarship (Programa de axudas á etapa predoutoral). C. L., A. F. L., S. N and J. F. L thank the financial support of the PROTEOMASS Scientific Society (Portugal) (General Funding Grants 2022-2023) and the Associate Laboratory Research Unit for Green Chemistry-Clean Processes and Technologies - LAQV/REQUIMTE. This work was carried out in part through the use of the INL Advanced Electron Microscopy, Imaging and Spectroscopy Facility and Microscopy Facility at CACTI (Universidade de Vigo). The authors thank Dr. Jamila Djafari for her assistance with the graphical abstract. Publisher Copyright: © 2023 The Royal Society of Chemistry.The seed-mediated growth of gold nanostructures is known to be strongly dependent not only on the gold seed nanocrystal structure but also on the presence of different additives that may influence the morphology, and therefore the crystalline structure of the final nanoparticle. Among the different additives or capping ligands, biomolecules are an interesting family due to their potential biomedical applications such as drug delivery, bioimaging, biosensing, phototherapy, and antimicrobial activities. Here, we develop a seed-mediated strategy for synthesizing uniform Au nanostars with tuneable optical properties which involves adenosine monophosphate (AMP) as a capping ligand. The experimental data reveal the key role of AMP not just providing colloidal stability and directing the reduction of the gold precursor via complexation but also mediating the anisotropic growth of the Au seeds via its selective adsorption on the different crystalline facets of Au nanoparticles. These observations agree with theoretical simulations carried out using molecular dynamics and density functional theory (DFT) calculations. Interestingly, the obtained Au nanostars showed high thermal stability as well as colloidal stability in polar organic solvents, which allowed their direct silica coating via the Stöber method. Importantly, we also explored the mimic enzymatic activity of the resulting gold nanostars and observed a superior catalytic activity compared with other gold nanoparticles reported in the literature.publishersversionpublishe

    Synthesis of tuneable gold nanostars: the role of adenosine monophosphate

    Get PDF
    The seed-mediated growth of gold nanostructures is known to be strongly dependent not only on the gold seed nanocrystal structure but also on the presence of different additives that may influence the morphology, and therefore the crystalline structure of the final nanoparticle. Among the different additives or capping ligands, biomolecules are an interesting family due to their potential biomedical applications such as drug delivery, bioimaging, biosensing, phototherapy, and antimicrobial activities. Here, we develop a seed-mediated strategy for synthesizing uniform Au nanostars with tuneable optical properties which involves adenosine monophosphate (AMP) as a capping ligand. The experimental data reveal the key role of AMP not just providing colloidal stability and directing the reduction of the gold precursor via complexation but also mediating the anisotropic growth of the Au seeds via its selective adsorption on the different crystalline facets of Au nanoparticles. These observations agree with theoretical simulations carried out using molecular dynamics and density functional theory (DFT) calculations. Interestingly, the obtained Au nanostars showed high thermal stability as well as colloidal stability in polar organic solvents, which allowed their direct silica coating via the Stöber method. Importantly, we also explored the mimic enzymatic activity of the resulting gold nanostars and observed a superior catalytic activity compared with other gold nanoparticles reported in the literature.Agencia Estatal de Investigación | Ref. PID2019-108954RB-I00Xunta de Galicia | Ref. ED431C 2020/09Fundação para a Ciência e a Tecnologia | Ref. UIDB/50006/2020Fundação para a Ciência e a Tecnologia | Ref. UIDP/50006/2020Fundação para a Ciência e a Tecnologia | Ref. EXPL/QUI-COL/0263/2021Universidade de Vigo/CISU

    Defective Ru-doped α-MnO2 nanorods enabling efficient hydrazine oxidation for energy-saving hydrogen production via proton exchange membranes at near-neutral pH

    Get PDF
    Proton exchange membrane water electrolysis (PEMWE) showes substantial advantages over the conventional alkaline water electrolysis (AWE) for power-to-hydrogen (PtH) conversion, given the faster response and wider dynamic current range of the PEMWE technology. However, PEMWE is currently still expensive due partly to the high voltage needed to operate at high current densities and inevitable usage of precious iridium/ruthenium-based catalysts to expedite the slow kinetics of the oxygen evolution reaction (OER) and to ensure sufficient durability under strongly acidic conditions. Herein, we report that ruthenium doped α-manganese oxide (Ru/α-MnO) nanorods show outstanding electrocatalytic performance toward the hydrazine (NH) oxidation reaction (HzOR) in near-neutral media (weak alkaline and weak acid), which can be used to replace the energy-demanding OER for PEMWE. The as-prepared Ru/α-MnO is found to comprise abundant defects. When used to catalyze HzOR in the acid-hydrazine electrolyte (0.05 M HSO + 0.5 M NH), it can deliver an anodic current density of 10 mA cm at a potential as low as 0.166 V vs. reversible hydrogen electrode (RHE). Moreover, Ru/α-MnO exhibits remarkable corrosion/oxidation resistance and remains electrochemically stable during HzOR for at least 1000 h. Theoretical calculations and experimental studies prove that Ru doping elongates the Mn–O bond and produces abundant cationic defects, which induces charge delocalization and significantly lowers material's electrical resistance and overpotential, resulting in excellent HzOR catalytic activity and stability. The introduction of NH significantly reduces the energy demand for hydrogen production, so that PEMWE can be accomplished under remarkably low voltages of 0.254 V at 10 mA cm and 0.935 V at 100 mA cm for a long term without notable degradation. This work opens a new avenue toward energy-saving PEMWE with earth-abundant OER catalysts.L. Liu acknowledges the start-up grant of the Songshan Lake Materials Laboratory (Grant No. Y2D1051Z311) and financial support from the Ministry of Science & Technology of China (Grant No. 22J4021Z311). B. Li is supported by Natural Science Foundation of Liao Ning Province (2021-MS-004) and ShenYang Normal University (BS202208). Z. P. Yu is financially supported by the China Scholarship Council (Grant No. 201806150015). Additionally, this work was also partially supported by the Nationa

    Ultrasound-assisted decoration of CuOx nanoclusters on TiO2 nanoparticles for additives free photocatalytic hydrogen production and biomass valorization by selective oxidation

    Get PDF
    The herein presented ultrasound-assisted ultra-wet (US-UWet) impregnation synthetic approach was followed in order to avoid the drawbacks of the conventional wet impregnation synthesis. The goal was to homogeneously decorate the surface of the TiO2 nanoparticles with nanometric sized (< 4 nm) clusters of mixed cupric and cuprous oxides. The physicochemical features of the nanocomposite (TiO2CuOx) were determined by high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and Diffuse reflectance (DR) spectroscopy. TiO2CuOx showed an enhanced and continuous capability to generate molecular hydrogen upon low power ultraviolet irradiation. The benchmark commercial TiO2 P25 did not reveal any H2 formation under these conditions. TiO2CuOx presented also a high efficiency for the additives-free selective partial oxidation of two well established biomass derived model platform chemicals/building blocks, 5-hydroxymethylfurfural (HMF) and benzyl alcohol (BnOH) to the value-added chemicals 2,5-diformylfuran (DFF) and benzyl aldehyde (PhCHO), respectively. The nanocomposite showed higher DFF and PhCHO yield compared to P25

    Large-scale synthesis of semiconducting Cu(In,Ga)Se2 nanoparticles for screen printing application

    Get PDF
    During the last few decades, the interest over chalcopyrite and related photovoltaics has been growing due the outstanding structural and electrical properties of the thin-film Cu(In,Ga)Se2 photoabsorber. More recently, thin film deposition through solution processing has gained increasing attention from the industry, due to the potential low-cost and high-throughput production. To this end, the elimination of the selenization procedure in the synthesis of Cu(In,Ga)Se2 nanoparticles with following dispersion into ink formulations for printing/coating deposition processes are of high relevance. However, most of the reported syntheses procedures give access to tetragonal chalcopyrite Cu(In,Ga)Se2 nanoparticles, whereas methods to obtain other structures are scarce. Herein, we report a large-scale synthesis of high-quality Cu(In,Ga)Se2 nanoparticles with wurtzite hexagonal structure, with sizes of 10–70 nm, wide absorption in visible to near-infrared regions, and [Cu]/[In + Ga] ≈ 0.8 and [Ga]/[Ga + In] ≈ 0.3 metal ratios. The inclusion of the synthesized NPs into a water-based ink formulation for screen printing deposition results in thin films with homogenous thickness of ≈4.5 µm, paving the way towards environmentally friendly roll-to-roll production of photovoltaic systems.This research was funded by the Portuguese Foundation for Science and Technology (PTDC/CTM-ENE/5387/2014, PTDC/NAN-MAT/28745/2017, UID/FIS/04650/2020, UID/QUI/ 0686/2020, PTDC/FIS-MAC/28157/2017, POCI-01-0145-FEDER-028108, SFRH/BD/121780/2016); the Basque Government Industry Department (ELKARTEK, HAZITEK); the National Science Foundation (DMR-2003783 grant); the Search-ON2: revitalization of HPC infrastructure of UMinho, (NORTE07-0162-FEDER-000086), co-funded by the North Portugal Regional Operational Programme (ON.2-O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). The use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357

    Quantum Confinement-Tunable Ultrafast Charge Transfer at the PbS Quantum Dot and Phenyl-C_(61)-butyric Acid Methyl Ester Interface

    Get PDF
    Quantum dot (QD) solar cells have emerged as promising low-cost alternatives to existing photovoltaic technologies. Here, we investigate charge transfer and separation at PbS QDs and phenyl-C_(61)-butyric acid methyl ester (PCBM) interfaces using a combination of femtosecond broadband transient absorption (TA) spectroscopy and steady-state photoluminescence quenching measurements. We analyzed ultrafast electron injection and charge separation at PbS QD/PCBM interfaces for four different QD sizes and as a function of PCBM concentration. The results reveal that the energy band alignment, tuned by the quantum size effect, is the key element for efficient electron injection and charge separation processes. More specifically, the steady-state and time-resolved data demonstrate that only small-sized PbS QDs with a bandgap larger than 1 eV can transfer electrons to PCBM upon light absorption. We show that these trends result from the formation of a type-II interface band alignment, as a consequence of the size distribution of the QDs. Transient absorption data indicate that electron injection from photoexcited PbS QDs to PCBM occurs within our temporal resolution of 120 fs for QDs with bandgaps that achieve type-II alignment, while virtually all signals observed in smaller bandgap QD samples result from large bandgap outliers in the size distribution. Taken together, our results clearly demonstrate that charge transfer rates at QD interfaces can be tuned by several orders of magnitude by engineering the QD size distribution. The work presented here will advance both the design and the understanding of QD interfaces for solar energy conversion

    The influence of Sb doping on the local structure and disorder in thermoelectric ZnO:Sb thin films

    Get PDF
    The experiment at HASYLAB/DESY was performed within the project I-20200161 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01–2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2. This work was carried out in part through the use of the INL Advanced Electron Microscopy, Imaging and Spectroscopy Facility. This work (proposal ID 2018–020-022469) was carried out with the support of the Karlsruhe Nano Micro Facility (KNMFi, www.knmf.kit.edu), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu). Joana Ribeiro is grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for the Ph.D grant SFRH/BD/147221/2019. Filipe Correia is grateful to the FCT, Portugal, for the Ph.D. grant SFRH/BD/111720/2015. The authors also acknowledge the funding from FCT/PIDDAC through the Strategic Funds project reference UIDB/04650/2020–2023.Thermoelectric transparent ZnO:Sb thin films were deposited by magnetron sputtering, with Sb content varying between 2 and 14 at%. As evidenced by X-ray diffraction analysis, the films crystallize in the ZnO wurtzite structure for lower levels of Sb-doping, developing a degree of amorphization for higher levels of Sb-doping. Temperature-dependent (10–300 K) X-ray absorption spectroscopy studies of the produced thin films were performed at the Zn and Sb K-edges to shed light on the influence of Sb doping on the local atomic structure and disorder in the ZnO:Sb thin films. The analysis of the Zn K-edge EXAFS spectra by the reverse Monte Carlo method allowed to extract detailed and accurate structural information in terms of the radial and bond angle distribution functions. The obtained results suggest that the introduction of antimony to the ZnO matrix promotes static disorder, which leads to partial amorphization with very small crystallites (∼3 nm) for large (12–14 at%) Sb content. Rutherford backscattering spectrometry (RBS) experiments enabled the determination of the in-depth atomic composition profiles of the films. The film composition at the surfaces determined by X-ray photoelectron spectroscopy (XPS) matches that of the bulk determined by RBS, except for higher Sb-doping in ZnO films, where the concentration of oxygen determined by XPS is smaller near the surface, possibly due to the formation of oxygen vacancies that lead to an increase in electrical conductivity. Traces of Sb–Sb metal bonds were found by XPS for the sample with the highest level of Sb-doping. Time-of-flight secondary ion mass spectrometry obtained an Sb/Zn ratio that follows that of the film bulk determined by RBS, although Sb is not always homogeneous, with samples with smaller Sb content (2 and 4 at% of Sb) showing a larger Sb content closer to the film/substrate interface. From the optical transmittance and reflectance curves, it was determined that the films with the lower amount of Sb doping have larger optical band-gaps, in the range of 2.9–3.2 eV, while the partially amorphous films with higher Sb content have smaller band-gaps in the range of 1.6–2.1 eV. Albeit the short-range crystalline order (∼3 nm), the film with 12 at% of Sb has the highest absolute Seebeck coefficient (∼56 μV/K) and a corresponding thermoelectric power factor of ∼0.2 μW·K−2·m−1. --//-- This is an open access article Joana M. Ribeiro, Frederico J. Rodrigues, Filipe C. Correia, Inga Pudza, Alexei Kuzmin, Aleksandr Kalinko, Edmund Welter, Nuno P. Barradas, Eduardo Alves, Alec P. LaGrow, Oleksandr Bondarchuk, Alexander Welle, Ahmad Telfah, Carlos J. Tavares, "The influence of Sb doping on the local structure and disorder in thermoelectric ZnO:Sb thin films", Journal of Alloys and Compounds, Volume 939, 2023, 168751, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2023.168751 published under the CC BY licence.Project I-20200161 EC; CALIPSOplus under the Grant Agreement 730872 from the EU Horizon 2020; FCT/PIDDAC through the Strategic Funds project reference UIDB/04650/2020–2023; institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01–2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2
    corecore