248 research outputs found

    Prompt Alpha Decay of a Well-deformed Band in 58Ni

    Get PDF
    Two excited well-deformed bands have been observed in the semi-magic nucleus Ni-58. One of the bands was observed to partially decay by emission of a prompt discrete alpha particle that feeds the 2949 keV 6(+) spherical yrast state in the daughter nucleus Fe-54. This constitutes the first observation of prompt alpha emission from states lying in the deformed secondary minimum of the nuclear potential. gamma -ray linking transitions via several parallel paths establish the spin. parity, and excitation energy of this deformed band in Ni-58

    Prompt Alpha Decay of a Well-deformed Band in 58Ni

    Get PDF
    Two excited well-deformed bands have been observed in the semi-magic nucleus Ni-58. One of the bands was observed to partially decay by emission of a prompt discrete alpha particle that feeds the 2949 keV 6(+) spherical yrast state in the daughter nucleus Fe-54. This constitutes the first observation of prompt alpha emission from states lying in the deformed secondary minimum of the nuclear potential. gamma -ray linking transitions via several parallel paths establish the spin. parity, and excitation energy of this deformed band in Ni-58

    Orbifold projection in supersymmetric QCD at N_f\leq N_c

    Get PDF
    Supersymmetric orbifold projection of N=1 SQCD with relatively small number of flavors (not larger than the number of colors) is considered. The purpose is to check whether orbifolding commutes with the infrared limit. On the one hand, one considers the orbifold projection of SQCD and obtains the low-energy description of the resulting theory. On the other hand, one starts with the low-energy effective theory of the original SQCD, and only then perfoms orbifolding. It is shown that at finite N_c the two low-energy theories obtained in these ways are different. However, in the case of stabilized run-away vacuum these two theories are shown to coincide in the large N_c limit. In the case of quantum modified moduli space, topological solitons carrying baryonic charges are present in the orbifolded low-energy theory. These solitons may restore the correspondence between the two theories provided that the soliton mass tends to zero in the large N_c limit.Comment: 10 pages; misprint corrected, reference adde

    X-ray photodesorption of complex organic molecules in protoplanetary disks -- I. Acetonitrile CH3CN

    Full text link
    X-rays emitted from pre-main-sequence stars at the center of protoplanetary disks can induce nonthermal desorption from interstellar ices populating the cold regions. This X-ray photodesorption needs to be quantified for complex organic molecules (COMs), including acetonitrile CH3CN, which has been detected in several disks. We experimentally estimate the X-ray photodesorption yields of neutral species from pure CH3CN ices and from interstellar ice analogs for which CH3CN is mixed either in a CO- or H2O-dominated ice. The ices were irradiated at 15 K by soft X-rays (400-600 eV) from synchrotron light (SOLEIL synchrotron). X-ray photodesorption was probed in the gas phase via quadrupole mass spectrometry. X-ray photodesorption yields were derived from the mass signals and were extrapolated to higher X-ray energies for astrochemical models. X-ray photodesorption of the intact CH3CN is detected from pure CH3CN ices and from mixed 13CO:CH3CN ices, with a yield of about 5x10^(-4) molecules/photon at 560 eV. When mixed in H2O-dominated ices, X-ray photodesorption of the intact CH3CN at 560 eV is below its detection limit, which is 10^(-4) molecules/photon. Yields associated with the desorption of HCN, CH4 , and CH3 are also provided. The derived astrophysical yields significantly depend on the local conditions expected in protoplanetary disks. They vary from 10^(-4) to 10(-6) molecules/photon for the X-ray photodesorption of intact CH3CN from CO-dominated ices. Only upper limits varying from 5x10^(-5) to 5x10^(-7) molecules/photon could be derived for the X-ray photodesorption of intact CH3CN from H2O-dominated ices. X-ray photodesorption of intact CH3CN from interstellar ices might in part explain the abundances of CH3CN observed in protoplanetary disks. The desorption efficiency is expected to vary with the local physical conditions, hence with the disk region

    Magnetic and intruder rotational bands in (113)In

    Get PDF
    ©2005 American Physical SocietyExcited states in ¹¹³In were populated via the reactions ¹⁰⁰Mo(¹⁸O,p4n)¹¹³In and ¹¹⁰Pd(7Li,4n)¹¹³In. The two known ΔJ = 2 intruder bands, based on the πg7/2 ⊗ d5/2 and πh11/2 orbitals, have been extended by 8¯h to spins (49/2+)¯h and (55/2−)¯h, respectively. The previous finding of three sequences of ΔJ = 1 γ -ray transitions has been confirmed. A self-consistent cranked shell-model calculation gives a good description of the contrasting alignment patterns of the two ΔJ = 2 intruder bands. The intruder bands, the known sequences ofM1 transitions, and spherical levels together represent a coexistence of three different excitation modes in this nucleus.S. Naguleswaran, R. S. Chakrawarthy, U. Garg, K. L. Lamkin, G. Smith, J. C. Walpe, A. Galindo-Uribarri, V. P. Janzen, D. C. Radford, R. Kaczarowski, D. B. Fossan, D. R. Lafosse, P. Vaska, Ch. Droste, T. Morek, S. Pilotte, J. DeGraaf, T. Drake, and R. Wys
    corecore