1,037 research outputs found
Can continental bogs with stand the pressure due to climate change?
Not all peatlands are alike. Theoretical and process based models suggest that ombrogenic, oligotrophic peatlands can withstand the pressures due to climate change because of the feedbacks among ecosystem production, decomposition and water storage. Although there have been many inductive explanations inferring from paleo-records, there is a lack of deductive empirical tests of the models predictions of these systems’ stability and there are few records of the changes in the net ecosystem carbon balance (NECB) of peatlands that are long enough to examine the dynamics of the NECB in relation to climate variability. Continuous measurements of all the components of the NECB and the associated general climatic and environmental conditions have been made at the Mer Bleue (MB) peatland, a large, 28 km2, 5 m deep, raised ombro-oligotrophic, shrub and Sphagnum covered bog, near Ottawa, Canada from May 1, 1998 until the present. The sixteen-year daily CO2, CH4, and DOC flux and NECB covers a wide range of variability in peatland water storage from very dry to very wet growing seasons. We used the MB data to test the extent of MB peatland’s stability and the strength of the underlying key feedback between the NECB and changes in water storage projected by the models. In 2007 we published a six-year (1999-2004) net ecosystem carbon balance (NECB) for MB of ∼22 ± 40 g C m-2 yr-1, but we have since recalculated the 1998-2004 NECB to be 32 ± 40 g C m-2 yr-1 based on a reanalyzed average NEP of 51 ± 41 g C m-2 yr-1. Over the same period the net loss of C via the CH4 and DOC fluxes were -4 ± 1 and -15 ± 3 g C m-2 yr-1. The 1998-2004 six-year MB average NECB is similar to the long-term C accumulation rate, estimated from MB peat cores, for the last 3,000 years. The post 2004 MB NEP has increased to an average of ∼96 ± 32 g C m-2 yr-1 largely to there being generally wetter growing seasons. The losses of C via DOC (18 ± 1 g C m-2 yr-1) and CH4 (7 ± 4 g C m-2 yr-1) while showing considerable year-to-year variability are not significantly different post 2004. Hence, the proportional loss of C as DOC and CH4 in the MB NECB is slightly less post-2004 than it was before 2004 though the cumulative errors preclude statistically differences. As a result the MB NECB has increased to 79 ± 29 g C m-2 yr-1 post 2004 yielding a 14 year contemporary NECB of 56 ± 36 g C m-2 yr-1, which is double the long-term accumulation rate of C. The variability in the annual NECB and growing season mean NEP for the MB bog can be explained (r2 = 0.35, p \u3c 0.01) by the variability in growing season water table depth. These results suggest the carbon balance – water table feedback is sufficient enough to create stability in continental bogs so they will withstand a considerable amount of climate change
Enhanced sheath heating in capacitively coupled discharges due to non-sinusoidal voltage waveforms
Through the use of particle-in-cell simulations, we demonstrate that the power deposition in
capacitively coupled discharges (in argon) can be increased by replacing sinusoidal waveforms
with Gaussian-shaped voltage pulses (with a repetition frequency of 13.56 MHz). By changing the
Gaussian pulse width, electron heating can be directly controlled, allowing for an increased plasma
density and ion flux for the same gas pressure and geometrical operating conditions. Analysis
of the power deposition profiles and electron distribution functions shows that enhanced
electron-sheath heating is responsible for the increased power absorption
An individual reproduction model sensitive to milk yield and body condition in Holstein dairy cows
To simulate the consequences of management in dairy herds, the use of individual-based herd models is very useful and has become common. Reproduction is a key driver of milk production and herd dynamics, whose influence has been magnified by the decrease in reproductive performance over the last decades. Moreover, feeding management influences milk yield (MY) and body reserves, which in turn influence reproductive performance. Therefore, our objective was to build an up-to-date animal reproduction model sensitive to both MY and body condition score (BCS). A dynamic and stochastic individual reproduction model was built mainly from data of a single recent long-term experiment. This model covers the whole reproductive process and is composed of a succession of discrete stochastic events, mainly calving, ovulations, conception and embryonic loss. Each reproductive step is sensitive to MY or BCS levels or changes. The model takes into account recent evolutions of reproductive performance, particularly concerning calving-to-first ovulation interval, cyclicity (normal cycle length, prevalence of prolonged luteal phase), oestrus expression and pregnancy (conception, early and late embryonic loss). A sensitivity analysis of the model to MY and BCS at calving was performed. The simulated performance was compared with observed data from the database used to build the model and from the bibliography to validate the model. Despite comprising a whole series of reproductive steps, the model made it possible to simulate realistic global reproduction outputs. It was able to well simulate the overall reproductive performance observed in farms in terms of both success rate (recalving rate) and reproduction delays (calving interval). This model has the purpose to be integrated in herd simulation models to usefully test the impact of management strategies on herd reproductive performance, and thus on calving patterns and culling rate
Bacterial Mutagenicity of Urban Organic Aerosol Sources in Comparison to Atmospheric Samples
The bacterial mutagenicity of a comprehensive set of urban
particulate air pollution source samples is examined using
the Salmonella typhimurium forward mutation assay.
Each of the combustion source samples examined, including
the exhaust from catalyst-equipped autos, noncatalyst
autos, heavy-duty diesel trucks, plus natural gas, distillate oil, and wood combustion sources, is mutagenic in this assay, with a response per microgram of organic carbon in these samples generally greater than that of cigarette smoke aerosol. The noncombustion source samples tested generally are not mutagenic at the levels examined. The specific mutagenicity (mutant fraction per microgram of
organic carbon) of ambient aerosol samples collected in
southern California is compared to a weighted average of
the specific mutagenicity of the primary source samples
assembled in proportion to their emission rates in the Los
Angeles area. In most cases where a comparison can be
made, the specific mutagenicity of the source composites
and the ambient samples are of similar magnitude, with
the exception that the -PMS mutagenicity of the aerosol
at Long Beach, CA, during the first half of the calendar
year 1982 and at Azusa, CA, during the April-June 1982
period is much higher than can be explained by direct
emissions from the sources studied here
Measurement and modeling of the sources and sinks of greenhouse gases from northern wetlands
Northern wetlands contain ≈30% of the world’s terrestrial carbon store, resulting from the incomplete decomposition of plant material inhibited because oxygen diffusion is limited by water saturation of the soil. While this behaviour results in a sink for CO2, anaerobic pathways of decomposition result in wetlands being a large, but variable, source of CH4. Northern wetlands tend to be nitrogen-impoverished, therefore they are not an important source of N2O. However, nitrogen deposition, peat extraction, and other land-use changes have the potential to alter their greenhouse gas (GHG) sink/source function. Until recently, most of the studies on the atmosphere-biosphere exchange of greenhouse gases from northern wetlands were short-term and seasonal. In 1998 the Peatland Carbon Study began continuous measurements of the carbon dynamics of a northern peatland and developed several ecosystem models to be used in simulations of the response of peatlands to climate variability and change. The continuous measurements have established the dominant role of climate variability in determining the magnitude and sign of the fluxes of GHGs. The Peatland Carbon Simulator (PCARS) was developed to use either direct measurements or modeled climate from a land surface process model such as the Canadian Land Surface Scheme (CLASS) which has been modi- fied to incorporate the physical attributes of wetlands as inputs. PCARS illustrates the relative importance of various components of the ecosystem in determining the interannual variability in GHG exchange. Evaluation of PCARS has helped identify significant gaps in our knowledge of peatland systems. A second, more phenomenological model, the Peat Accumulation Model (PAM), demonstrates the overall importance of precipitation in controlling decadal to millennial scale variations in sink/source strength of CO2. The Canadian Global Coupled Climate Carbon Model (CGC3M) Network is attempting to parameterize wetland processes for the inclusion in a global terrestrial ecosystem model for climate simulations, but it is a significant challenge to develop an efficient, yet realistic, wetland simulator for global scale modelling
Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics
This article introduces a simple microfluidic device that can be combined with synchrotron small-angle X-ray scattering (SAXS) for monitoring dynamic structural transitions. The microfluidic device is a thiol-ene-based system equipped with 125 μm-thick polystyrene windows, which are suitable for X-ray experiments. The device was prepared by soft lithography using elastomeric molds followed by a simple UV-initiated curing step to polymerize the chip material and simultaneously seal the device with the polystyrene windows. The microfluidic device was successfully used to explore the dynamics of the structural transitions of phytantriol/dioleoylphosphatidylglycerol-based cubosomes on exposure to a buffer containing calcium ions. The resulting SAXS data were resolved in the time frame between 0.5 and 5.5 s, and a calcium-triggered structural transition from an internal inverted-type cubic phase of symmetry Im3m to an internal inverted-type cubic phase of symmetry Pn3m was detected. The combination of microfluidics with X-ray techniques opens the door to the investigation of early dynamic structural transitions, which is not possible with conventional techniques such as glass flow cells. The combination of microfluidics with X-ray techniques can be used for investigating protein unfolding, for monitoring the formation of nanoparticles in real time, and for other biomedical and pharmaceutical investigations. A combination of microfluidics with X-ray techniques has been used to perform dynamic structural studies on nanoparticulate formulations
- …