724 research outputs found

    Improving an Experimental Test Bed with Time-Varying Parameters for Developing High-Rate Structural Health Monitoring Methods

    Get PDF
    With the development of complex structures with high-rate dynamics, such as space structures, weapons systems, or hypersonic vehicles, comes a need for real-time structural health monitoring (SHM) methods. Researchers are developing algorithms for high-rate SHM methods, however, limited data exists on which to test these algorithms. An experimental test bed to simulate high-rate systems with rapid parameter changes was previously presented by the authors. This paper expands on the previous work. The initial configuration consisted of a cantilevered steel beam with a cart-roller system on a linear actuator to create an adjustable boundary condition along the beam, as well as detachable added masses. Experimental results are presented for the system in new configurations during various parameter changes. A clamped-clamped condition to increase the system’s natural frequencies is studied, along with improvements in test repeatability and user control over parameter changes

    Optimizing the discrete time quantum walk using a SU(2) coin

    Full text link
    We present a generalized version of the discrete time quantum walk, using the SU(2) operation as the quantum coin. By varying the coin parameters, the quantum walk can be optimized for maximum variance subject to the functional form σ2N2\sigma^2 \approx N^2 and the probability distribution in the position space can be biased. We also discuss the variation in measurement entropy with the variation of the parameters in the SU(2) coin. Exploiting this we show how quantum walk can be optimized for improving mixing time in an nn-cycle and for quantum walk search.Comment: 6 pages, 6 figure

    A Note on Hartle-Hawking Vacua

    Get PDF
    The purpose of this note is to establish the basic properties--- regularity at the horizon, time independence, and thermality--- of the generalized Hartle-Hawking vacua defined in static spacetimes with bifurcate Killing horizon admitting a regular Euclidean section. These states, for free or interacting fields, are defined by a path integral on half the Euclidean section. The emphasis is on generality and the arguments are simple but formal.Comment: 5 pages, LaTe

    Implementation of the Five Qubit Error Correction Benchmark

    Get PDF
    The smallest quantum code that can correct all one-qubit errors is based on five qubits. We experimentally implemented the encoding, decoding and error-correction quantum networks using nuclear magnetic resonance on a five spin subsystem of labeled crotonic acid. The ability to correct each error was verified by tomography of the process. The use of error-correction for benchmarking quantum networks is discussed, and we infer that the fidelity achieved in our experiment is sufficient for preserving entanglement.Comment: 6 pages with figure

    Entropy of Constant Curvature Black Holes in General Relativity

    Get PDF
    We consider the thermodynamic properties of the constant curvature black hole solution recently found by Banados. We show that it is possible to compute the entropy and the quasilocal thermodynamics of the spacetime using the Einstein-Hilbert action of General Relativity. The constant curvature black hole has some unusual properties which have not been seen in other black hole spacetimes. The entropy of the black hole is not associated with the event horizon; rather it is associated with the region between the event horizon and the observer. Further, surfaces of constant internal energy are not isotherms so the first law of thermodynamics exists only in an integral form. These properties arise from the unusual topology of the Euclidean black hole instanton.Comment: 4 pages LaTeX2e (RevTeX), 2 PostScript figures. Small corrections in the text and the reference

    The Origin of Time Asymmetry

    Full text link
    It is argued that the observed Thermodynamic Arrow of Time must arise from the boundary conditions of the universe. We analyse the consequences of the no boundary proposal, the only reasonably complete set of boundary conditions that has been put forward. We study perturbations of a Friedmann model containing a massive scalar field but our results should be independent of the details of the matter content. We find that gravitational wave perturbations have an amplitude that remains in the linear regime at all times and is roughly time symmetric about the time of maximum expansion. Thus gravitational wave perturbations do not give rise to an Arrow of Time. However density perturbations behave very differently. They are small at one end of the universe's history, but grow larger and become non linear as the universe gets larger. Contrary to an earlier claim, the density perturbations do not get small again at the other end of the universe's history. They therefore give rise to a Thermodynamic Arrow of Time that points in a constant direction while the universe expands and contracts again. The Arrow of Time does not reverse at the point of maximum expansion. One has to appeal to the Weak Anthropic Principle to explain why we observe the Thermodynamic Arrow to agree with the Cosmological Arrow, the direction of time in which the universe is expanding.Comment: 41 pages, DAMTP R92/2

    Simple Quantum Error Correcting Codes

    Full text link
    Methods of finding good quantum error correcting codes are discussed, and many example codes are presented. The recipe C_2^{\perp} \subseteq C_1, where C_1 and C_2 are classical codes, is used to obtain codes for up to 16 information qubits with correction of small numbers of errors. The results are tabulated. More efficient codes are obtained by allowing C_1 to have reduced distance, and introducing sign changes among the code words in a systematic manner. This systematic approach leads to single-error correcting codes for 3, 4 and 5 information qubits with block lengths of 8, 10 and 11 qubits respectively.Comment: Submitted to Phys. Rev. A. in May 1996. 21 pages, no figures. Further information at http://eve.physics.ox.ac.uk/ASGhome.htm

    Quantum data processing and error correction

    Get PDF
    This paper investigates properties of noisy quantum information channels. We define a new quantity called {\em coherent information} which measures the amount of quantum information conveyed in the noisy channel. This quantity can never be increased by quantum information processing, and it yields a simple necessary and sufficient condition for the existence of perfect quantum error correction.Comment: LaTeX, 20 page

    Effective Pure States for Bulk Quantum Computation

    Full text link
    In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) and Cory et al. (spatial averaging) for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla qubits and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high temperature and low temperature bulk quantum computing and analyze the signal to noise behavior of each.Comment: 24 pages in LaTex, 14 figures, the paper is also avalaible at http://qso.lanl.gov/qc
    corecore