4,151 research outputs found

    The influence of persuasion in opinion formation and polarization

    Get PDF
    We present a model that explores the influence of persuasion in a population of agents with positive and negative opinion orientations. The opinion of each agent is represented by an integer number kk that expresses its level of agreement on a given issue, from totally against k=Mk=-M to totally in favor k=Mk=M. Same-orientation agents persuade each other with probability pp, becoming more extreme, while opposite-orientation agents become more moderate as they reach a compromise with probability qq. The population initially evolves to (a) a polarized state for r=p/q>1r=p/q>1, where opinions' distribution is peaked at the extreme values k=±Mk=\pm M, or (b) a centralized state for r<1r<1, with most opinions around k=±1k=\pm 1. When r1r \gg 1, polarization lasts for a time that diverges as rMlnNr^M \ln N, where NN is the population's size. Finally, an extremist consensus (k=Mk=M or M-M) is reached in a time that scales as r1r^{-1} for r1r \ll 1

    Radiation 'damping' in atomic photonic crystals

    Get PDF
    The force exerted on a material by an incident beam of light is dependent upon the material's velocity in the laboratory frame of reference. This velocity dependence is known to be diffcult to measure, as it is proportional to the incident optical power multiplied by the ratio of the material velocity to the speed of light. Here we show that this typically tiny effect is greatly amplified in multilayer systems composed of resonantly absorbing atoms (e.g. optically trapped 87Rb), which may exhibit ultra-narrow photonic band gaps. The amplification of the effect is shown to be three orders of magnitude greater than previous estimates for conventional photonic-band-gap materials, and significant for material velocities of a few ms/s.Comment: 5 pages, 3 figure

    Exciton-phonon scattering and photo-excitation dynamics in J-aggregate microcavities

    Full text link
    We have developed a model accounting for the photo-excitation dynamics and the photoluminescence of strongly coupled J-aggregate microcavities. Our model is based on a description of the J-aggregate film as a disordered Frenkel exciton system in which relaxation occurs due to the presence of a thermal bath of molecular vibrations. In a strongly coupled microcavity exciton-polaritons are formed, mixing superradiant excitons and cavity photons. The calculation of the microcavity steady-state photoluminescence, following a CW non resonant pumping, is carried out. The experimental photoluminescence intensity ratio between upper and lower polariton branches is accurately reproduced. In particular both thermal activation of the photoluminescence intensity ratio and its Rabi splitting dependence are a consequence of the bottleneck in the relaxation, occurring at the bottom of the excitonic reservoir. The effects due to radiative channels of decay of excitons and to the presence of a paritticular set of discrete optical molecular vibrations active in relaxation processes are investigared.Comment: 8 pages, 6 figure

    Interacting social processes on interconnected networks

    Get PDF
    We propose and study a model for the interplay between two different dynamical processes --one for opinion formation and the other for decision making-- on two interconnected networks AA and BB. The opinion dynamics on network AA corresponds to that of the M-model, where the state of each agent can take one of four possible values (S=2,1,1,2S=-2,-1,1,2), describing its level of agreement on a given issue. The likelihood to become an extremist (S=±2S=\pm 2) or a moderate (S=±1S=\pm 1) is controlled by a reinforcement parameter r0r \ge 0. The decision making dynamics on network BB is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S=+1S=+1) or against (S=1S=-1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β\beta. Starting from a polarized case scenario in which all agents of network AA hold positive orientations while all agents of network BB have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β\beta, the two-network system reaches a consensus in the positive state (initial state of network AA) when the reinforcement overcomes a crossover value r(β)r^*(\beta), while a negative consensus happens for r<r(β)r<r^*(\beta). In the rβr-\beta phase space, the system displays a transition at a critical threshold βc\beta_c, from a coexistence of both orientations for β<βc\beta<\beta_c to a dominance of one orientation for β>βc\beta>\beta_c. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r,β)(r^*,\beta^*).Comment: 25 pages, 6 figure

    Synchronization in interacting Scale Free Networks

    Get PDF
    We study the fluctuations of the interface, in the steady state, of the Surface Relaxation Model (SRM) in two scale free interacting networks where a fraction qq of nodes in both networks interact one to one through external connections. We find that as qq increases the fluctuations on both networks decrease and thus the synchronization reaches an improvement of nearly 40%40\% when q=1q=1. The decrease of the fluctuations on both networks is due mainly to the diffusion through external connections which allows to reducing the load in nodes by sending their excess mostly to low-degree nodes, which we report have the lowest heights. This effect enhances the matching of the heights of low-and high-degree nodes as qq increases reducing the fluctuations. This effect is almost independent of the degree distribution of the networks which means that the interconnection governs the behavior of the process over its topology.Comment: 13 pages, 7 figures. Added a relevant reference.Typos fixe

    Recovery of Interdependent Networks

    Get PDF
    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy of nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ\gamma, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1p1-p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γp\gamma-p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot avoid the system collapse

    Role of anisotropy in the F\"orster energy transfer from a semiconductor quantum well to an organic crystalline overlayer

    Full text link
    We consider the non-radiative resonant energy transfer from a two-dimensional Wannier exciton (donor) to a Frenkel exciton of a molecular crystal overlayer (acceptor). We characterize the effect of the optical anisotropy of the organic subsystem on this process. Using realistic values of material parameters, we show that it is possible to change the transfer rate within typically a factor of two depending on the orientation of the crystalline overlayer. The resonant matching of donor and acceptor energies is also partly tunable via the organic crystal orientation.Comment: 6 pages, 8 figure

    Coherent perfect absorption in one-sided reflectionless media

    Get PDF
    In optical experiments one-sided reflectionless (ORL) and coherent perfect absorption (CPA) are unusual scattering properties yet fascinating for their fundamental aspects and for their practical interest. Although these two concepts have so far remained separated from each other, we prove that the two phenomena are indeed strictly connected. We show that a CPA-ORL connection exists between pairs of points lying along lines close to each other in the 3D space-parameters of a realistic lossy atomic photonic crystal. The connection is expected to be a generic feature of wave scattering in non-Hermitian optical media encompassing, as a particular case, wave scattering in parity-time (PT) symmetric media
    corecore