8 research outputs found

    High Prevalence of Arcobacter Carriage in Older Subjects with Type 2 Diabetes

    Get PDF
    Arcobacters are potential pathogens related to diarrheic infections and, rarely, septicaemia. This study evaluated the prevalence of arcobacters in stool samples of subjects with (n = 38) and without (n = 61) type 2 diabetes by using cultural and molecular techniques. Three Arcobacter positive cultures were found, all among diabetic subjects, whereas molecular analysis showed a carriage rate of 79% and 26.2% in subjects with and without type 2 diabetes (P < .001), respectively. The multivariate analysis showed that type 2 diabetes (β = 1.913; 95%CI: 2.378–19.285; P < .0001) and age (β = 1.744; 95%CI: 2.077–15.766; P = .001) were the only factors independently associated with arcobacters colonization in this population. Our study demonstrated a high prevalence of arcobacters colonization in type 2 diabetic and older subjects. The clinical significance and the potential health risk associated with these emerging species remain to be determined

    Biochemical Characterization of Clinical Strains of Staphylococcus spp. and Their Sensitivity to Polyphenols-Rich Extracts from Pistachio (Pistacia vera L.)

    No full text
    We characterized a number of clinical strains of Staphylococcus spp. and investigated their sensitivity against polyphenols-rich extracts from natural raw and roasted pistachios (NPRE and RPRE, respectively). Out of 31 clinical isolates of Staphylococcus spp., 23 were coagulase-positive and identified as S. aureus, of which 21 were MRSA. Polyphenols-rich extracts from natural pistachios and roasted pistachios were prepared: the total phenols content, expressed as gallic acid equivalent (GAE)/100 g fresh weight (FW), was higher in natural pistachios (359.04 &plusmn; 8.124 mg) than roasted pistachios (225.18 &plusmn; 5.055 mg). The higher total phenols content in natural pistachios also correlated to the higher free-radical scavenging activity found by DPPH assay: NPRE and RPRE showed IC50 values of 0.85 (C.L. 0.725&ndash;0.976 mg mL&minus;1) and 1.15 (C.L. 0.920&ndash;1.275 mg mL&minus;1), respectively. Both NPRE and RPRE were active against S. aureus 6538P and Staph. spp. clinical isolates, with RPRE being the most active (MIC values ranging between 31.25 and 2000 &mu;g mL&minus;1). The antimicrobial potential of pistachios could be used to identify novel treatments for S. aureus skin infections

    Biochemical Characterization of Clinical Strains of Staphylococcus spp. and Their Sensitivity to Polyphenols-Rich Extracts from Pistachio (Pistacia vera L.)

    No full text
    We characterized a number of clinical strains of Staphylococcus spp. and investigated their sensitivity against polyphenols-rich extracts from natural raw and roasted pistachios (NPRE and RPRE, respectively). Out of 31 clinical isolates of Staphylococcus spp., 23 were coagulase-positive and identified as S. aureus, of which 21 were MRSA. Polyphenols-rich extracts from natural pistachios and roasted pistachios were prepared: the total phenols content, expressed as gallic acid equivalent (GAE)/100 g fresh weight (FW), was higher in natural pistachios (359.04 &plusmn; 8.124 mg) than roasted pistachios (225.18 &plusmn; 5.055 mg). The higher total phenols content in natural pistachios also correlated to the higher free-radical scavenging activity found by DPPH assay: NPRE and RPRE showed IC50 values of 0.85 (C.L. 0.725&ndash;0.976 mg mL&minus;1) and 1.15 (C.L. 0.920&ndash;1.275 mg mL&minus;1), respectively. Both NPRE and RPRE were active against S. aureus 6538P and Staph. spp. clinical isolates, with RPRE being the most active (MIC values ranging between 31.25 and 2000 &mu;g mL&minus;1). The antimicrobial potential of pistachios could be used to identify novel treatments for S. aureus skin infections

    In Vitro Simulated Hemoperfusion on Seraph<sup>®</sup>-100 as a Promising Strategy to Counteract Sepsis

    No full text
    Blood purification represents a treatment option for sepsis, improving inflammation and the hyper-activated immune system. This study investigates the binding efficacy of Seraph®-100 against 108 CFU/mL of Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Escherichia coli (E. coli) during a simulated hemoperfusion treatment. The fluorescence-activated cell sorting (FACS) technique was used to evaluate the bacteria reduction, whereas kinetic analysis and cultures revealed bacterial detection and counting at established time points. At the end of the experiment, the filter was cut at three different levels, obtaining suspensions for cultures and scanning electron microscopy (SEM) analyses. The FACS technique revealed a 78.77% reduction of the total bacterial load at the end of the treatment, with maximum filter sequestration occurring in the first 30 min of the treatment. Non-linear regression analysis of kinetic experiments (T0–240 min) highlighted a lower growth rate of S. aureus than the other two Gram bacteria, demonstrating a greater affinity without influencing a reduction rate of 99% for all three bacteria. The analyses of the suspension aliquots of the filter sections confirmed these data, revealing 1 × 108 CFU/mL, equal to the initial bacterial charge. Furthermore, the filter head adsorbed approximately 50% of bacteria, whereas the remaining amount was equally distributed between the body and the tail, as corroborated by SEM analysis. In conclusion, Seraph®-100 adsorbed 108 CFU/mL of S. aureus, E. coli, and P. aeruginosa during an in vitro simulated hemoperfusion session

    Virulence, Antimicrobial Resistance and Biofilm Production of Escherichia coli Isolates from Healthy Broiler Chickens in Western Algeria

    No full text
    The aim of this study was to assess the virulence, antimicrobial resistance and biofilm production of Escherichia coli strains isolated from healthy broiler chickens in Western Algeria. E. coli strains (n = 18) were identified by matrix-assisted laser desorption–ionization time-of-flight mass spectrometry. Susceptibility to 10 antibiotics was determined by standard methods. Virulence and extended-spectrum β-lactamase (ESBL) genes were detected by PCR. The biofilm production was evaluated by microplate assay. All the isolates were negative for the major virulence/toxin genes tested (rfbE, fliC, eaeA, stx1), except one was stx2-positive. However, all were resistant to at least three antibiotics. Ten strains were ESBL-positive. Seven carried the β-lactamase blaTEM gene only and two co-harbored blaTEM and blaCTX-M−1 genes. One carried the blaSHV gene. Among the seven strains harboring blaTEM only, six had putative enteroaggregative genes. Two contained irp2, two contained both irp2 and astA, one contained astA and another contained aggR, astA and irp2 genes. All isolates carrying ESBL genes were non-biofilm producers, except one weak producer. The ESBL-negative isolates were moderate biofilm producers and, among them, two harbored astA, two irp2, and one aggR, astA and irp2 genes. This study highlights the spread of antimicrobial-resistant E. coli strains from healthy broiler chickens in Western Algeria
    corecore