722 research outputs found
Decomposition of spontaneous fluctuations in tumour oxygenation using BOLD MRI and independent component analysis
Solid tumours can undergo cycles of hypoxia, followed by reoxygenation, which can have significant implications for the success of anticancer therapies. A need therefore exists to develop methods to aid its detection and to further characterise its biological basis. We present here a novel method for decomposing systemic and tumour-specific contributions to fluctuations in tumour deoxyhaemoglobin concentration, based on magnetic resonance imaging measurements
Neoadjuvant chemotherapy and trastuzumab versus neoadjuvant chemotherapy followed by post-operative trastuzumab for patients with HER2-positive breast cancer
Neoadjuvant chemotherapy plus trastuzumab (NCT) increases the rate of pathological complete response (pCR) and event-free survival (EFS) compared to neoadjuvant chemotherapy (NC) alone in women with HER2 positive breast cancer (BC). pCR in this setting is associated with improved EFS. Whether NCT preferentially improves EFS in comparison to NC followed by adjuvant trastuzumab initiated postoperatively (NCAT) has not been addressed. Using clinical data from women with HER2 positive BC treated at 7 European institutions between 2007 and 2010 we sought to investigate the impact on breast cancer outcomes of concomitant (NCT) versus sequential (NCAT) treatment in HER2 positive early BC. The unadjusted hazard ratio (HR) for event free survival with NCT compared with NCAT was 0.63 (95% CI 0.37–1.08; p = 0.091). Multivariable analysis revealed that treatment group, tumour size and ER status were significantly associated with EFS from diagnosis. In the whole group NCT was associated with a reduced risk of an event relative to NCAT, an effect that was confined to ER negative (HR: 0.25; 95% CI, 0.10–0.62; p = 0.003) as opposed to ER positive tumours (HR: 1.07; 95% CI, 0.46–2.52; p = 0.869). HER2 positive/ER negative BC treated with NC gain greatest survival benefit when trastuzumab is administered in both the neoadjuvant and adjuvant period rather than in the adjuvant period alone. These data support the early introduction of targeted combination therapy in HER2 positive/ER negative BC
Improved hepatic arterial fraction estimation using cardiac output correction of arterial input functions for liver DCE MRI
Liver dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling could be useful in the assessment of diffuse liver disease and focal liver lesions, but is compromised by errors in arterial input function (AIF) sampling. In this study, we apply cardiac output correction to arterial input functions (AIFs) for liver dynamic contrast enhanced (DCE) MRI and investigate the effect on dual-input single compartment hepatic perfusion parameter estimation and reproducibility. Thirteen healthy volunteers (28.7±1.94 years, seven males) underwent liver DCE MRI and cardiac output measurement using aortic root phase contrast MRI (PCMRI), with reproducibility (n=9) measured at seven days. Cardiac output AIF correction was undertaken by constraining the first pass AIF enhancement curve using the indicator-dilution principle. Hepatic perfusion parameters with and without cardiac output AIF correction were compared and seven-day reproducibility assessed. Differences between cardiac output corrected and uncorrected liver DCE MRI portal venous (PV) perfusion (p=0.066), total liver blood flow (TLBF)(p=0.101), hepatic arterial (HA) fraction (p=0.895), mean transit time (MTT)(p=0.646), distribution volume (DV)(p=0.890) were not significantly different. Seven-day corrected HA fraction reproducibility was improved (mean difference 0.3%, Bland-Altman 95% Limits-of-Agreement (BA95%LoA) ±27.9%, Coefficient of Variation (CoV) 61.4% vs 9.3%, ±35.5%, 81.7% respectively without correction). Seven-day uncorrected PV perfusion was also improved (mean difference 9.3 ml/min/100g, BA95%LoA ±506.1 ml/min/100g, CoV 64.1% vs 0.9 ml/min/100g, ±562.8 ml/min/100g, 65.1% respectively with correction) as was uncorrected TLBF(mean difference 43.8 ml/min/100g, BA95%LoA ±586.7 ml/min/100g, CoV 58.3% vs 13.3 ml/min/100g, ±661.5 ml/min/100g, 60.9% respectively with correction). Reproducibility of uncorrected MTT was similar (uncorrected mean difference 2.4s, BA95%LoA ±26.7s, CoV 60.8% uncorrected vs 3.7s, ±27.8s, 62.0% respectively with correction), as was and DV (uncorrected mean difference 14.1%, BA95%LoA ±48.2%, CoV 24.7% vs 10.3%, ±46.0%, 23.9% respectively with correction). Cardiac output AIF correction does not significantly affect the estimation of hepatic perfusion parameters but demonstrates improvements in normal volunteer seven-day HA fraction reproducibility, but deterioration in PV perfusion and TLBF reproducibility. Improved HA fraction reproducibility maybe important as arterialisation of liver perfusion is increased in chronic liver disease and within malignant liver lesions
Non-invasive measurement of hepatic venous oxygen saturation (ShvOâ‚‚) with quantitative susceptibility mapping in normal mouse liver and livers bearing colorectal metastases
PURPOSE: The purpose of this prospective study was to investigate the potential of QSM to noninvasively measure hepatic venous oxygen saturation (ShvO2). Materials & Methods: All animal studies were performed in accordance with the UK Home Office Animals Science Procedures Act (1986) and UK National Cancer Research Institute (NCRI) guidelines. QSM data was acquired from a cohort of mice (n=10) under both normoxic (medical air, 21% O2/balance N), and hyperoxic conditions (100% O2). Susceptibility measurements were taken from large branches of the portal and hepatic vein under each condition and were used to calculate venous oxygen saturation in each vessel. Blood was extracted from the IVC of three mice under norm- and hyperoxic conditions, and oxygen saturation was measured using a blood gas analyser to act as a gold standard. QSM data was also acquired from a cohort of mice bearing colorectal liver metastases (CRLM). SvO2 was calculated from susceptibility measurements made in the portal and hepatic veins, and compared to the healthy animals. RESULTS: SvO2 calculated from QSM measurements showed a significant increase of 14.93% in the portal vein (p < 0.05), and an increase of 21.39% in the hepatic vein (p < 0.01). Calculated results showed excellent agreement with those from the blood gas analyser (26.14% increase). ShvO2 was significantly lower in the disease cohort (30.18 ± 11.6%), than the healthy animals (52.67 ± 17.8%) (p < 0.05), but differences in the portal vein were not significant. CONCLUSION: QSM is a feasible tool for non-invasively measuring hepatic venous oxygen saturation and can detect differences in oxygen consumption in livers bearing colorectal metastases
Monitoring the Growth of an Orthotopic Tumour Xenograft Model: Multi-Modal Imaging Assessment with Benchtop MRI (1T), High-Field MRI (9.4T), Ultrasound and Bioluminescence
BACKGROUND: Research using orthotopic and transgenic models of cancer requires imaging methods to non-invasively quantify tumour burden. As the choice of appropriate imaging modality is wide-ranging, this study aimed to compare low-field (1T) magnetic resonance imaging (MRI), a novel and relatively low-cost system, against established preclinical techniques: bioluminescence imaging (BLI), ultrasound imaging (US), and high-field (9.4T) MRI. METHODS: A model of colorectal metastasis to the liver was established in eight mice, which were imaged with each modality over four weeks post-implantation. Tumour burden was assessed from manually segmented regions. RESULTS: All four imaging systems provided sufficient contrast to detect tumours in all of the mice after two weeks. No significant difference was detected between tumour doubling times estimated by low-field MRI, ultrasound imaging or high-field MRI. A strong correlation was measured between high-field MRI estimates of tumour burden and all the other modalities (p < 0.001, Pearson). CONCLUSION: These results suggest that both low-field MRI and ultrasound imaging are accurate modalities for characterising the growth of preclinical tumour models
Insular and occipital changes in visual snow syndrome: a BOLD fMRI and MRS study.
OBJECTIVE
To investigate the pathophysiology of visual snow (VS), through a combined functional neuroimaging and magnetic resonance spectroscopy (1 H-MRS) approach.
METHODS
We applied a functional MRI block-design protocol studying the responses to a visual stimulation mimicking VS, in combination with 1 H-MRS over the right lingual gyrus, in 24 patients with VS compared to an equal number of age- and gender-matched healthy controls.
RESULTS
We found reduced BOLD responses to the visual stimulus with respect to baseline in VS patients compared to controls, in the left (k = 291; P = 0.025; peak MNI coordinate [-34 12 -6]) and right (k = 100; P = 0.003; peak MNI coordinate [44 14 -2]) anterior insula. Our spectroscopy analysis revealed a significant increase in lactate concentrations in patients with respect to controls (0.66 ± 0.9 mmol/L vs. 0.07 ± 0.2 mmol/L; P < 0.001) in the right lingual gyrus. In this area, there was a significant negative correlation between lactate concentrations and BOLD responses to visual stimulation (P = 0.004; r = -0.42), which was dependent on belonging to the patient group.
INTERPRETATION
As shown by our BOLD analysis, VS is characterized by a difference in bilateral insular responses to a visual stimulus mimicking VS itself, which could be due to disruptions within the salience network. Our results also suggest that patients with VS have a localized disturbance in extrastriate anaerobic metabolism, which may in turn cause a decreased metabolic reserve for the regular processing of visual stimuli
Acute changes in liver tumour perfusion measured non-invasively with arterial spin labelling
BACKGROUND: Non-invasive measures of tumour vascular perfusion are desirable, in order to assess response to vascular targeting (or modifying) therapies. In this study, hepatic arterial spin labelling (ASL) magnetic resonance imaging (MRI) was investigated to measure acute changes in perfusion of colorectal cancer in the liver, in response to vascular disruption therapy with OXi4503. METHODS: SW1222 and LS174T tumours were established in the liver of MF1 nu/nu mice via intrasplenic injection. Perfusion and R2(*) MRI measurements were acquired with an Agilent 9.4T horizontal bore scanner, before and at 90 min after 40 mg kg(-1) OXi4503. RESULTS: A significant decrease in SW1222 tumour perfusion was observed (-43±33%, P<0.005). LS174T tumours had a significantly lower baseline level of perfusion. Intrinsic susceptibility MRI showed a significant increase in R2(*) in LS174T tumours (28±25%, P<0.05). An association was found between the change in tumour perfusion and the proximity to large vessels, with pre-treatment blood flow predictive of subsequent response. Histological evaluation confirmed the onset of necrosis and evidence of heterogeneous response between tumour deposits. CONCLUSIONS: Hepatic ASL-MRI can detect acute response to targeted tumour vascular disruption entirely non-invasively. Hepatic ASL of liver tumours has potential for use in a clinical setting
Number of HIV-1 founder variants is determined by the recency of the source partner infection
During sexual transmission, the high genetic diversity of HIV-1 within an individual is frequently reduced to one founder variant that initiates infection. Understanding the drivers of this bottleneck is crucial to developing effective infection control strategies. Little is known about the importance of the source partner during this bottleneck. To test the hypothesis that the source partner affects the number of HIV founder variants, we developed a phylodynamic model calibrated using genetic and epidemiological data on all existing transmission pairs for whom the direction of transmission and the infection stage of the source partner are known. Our results suggest that acquiring infection from someone in the acute (early) stage of infection increases the risk of multiple-founder variant transmission compared with acquiring infection from someone in the chronic (later) stage of infection. This study provides the first direct test of source partner characteristics to explain the low frequency of multiple-founder strain infections
External validation of the fatty liver index and lipid accumulation product indices, using H-1-magnetic resonance spectroscopy, to identify hepatic steatosis in healthy controls and obese, insulin-resistant individuals
Background and Aims. Simple clinical algorithms including the Fatty Liver Index (FLI) and Lipid Accumulation Product (LAP) have been developed as a surrogate marker for Non-Alcoholic Fatty Liver Disease (NAFLD). These algorithms have been constructed using ultrasonography, a semi-quantitative method. This study aimed to validate FLI and LAP as measures of hepatic steatosis, as measured quantitatively by proton magnetic resonance spectroscopy (1H-MRS).
Methods. Data were collected from 168 patients with NAFLD and 168 controls who had undergone clinical, biochemical and anthropometric assessment in the course of research studies. Values of FLI and LAP were determined, and assessed both as predictors of the presence of hepatic steatosis (liver fat >5.5 %) and of actual liver fat content, as measured by 1H MRS. The discriminative ability of FLI and LAP was estimated using the area under the Receiver Operator Characteristic curve (AUROC). Since FLI can also be interpreted as a predictive probability of hepatic steatosis, we assessed how well calibrated it was in our cohort. Linear regression with prediction intervals was used to assess the ability of FLI and LAP to predict liver fat content.
Results. FLI and LAP discriminated between patients with and without hepatic steatosis with an AUROC of 0.79 (IQR= 0.74, 0.84) and 0.78 (IQR= 0.72, 0.83), although quantitative prediction of liver fat content was unsuccessful. Additionally, the algorithms accurately matched the observed percentages of patients with hepatic steatosis in our cohort.
Conclusions. FLI and LAP may be used clinically, and for metabolic and epidemiological research, to identify patients with hepatic steatosis, but not as surrogates for liver fat content
A de novo approach to inferring within-host fitness effects during untreated HIV-1 infection
Funder: Isaac Newton Trust; funder-id: http://dx.doi.org/10.13039/501100004815Funder: Li Ka Shing Foundation; funder-id: http://dx.doi.org/10.13039/100007421Funder: Division of Intramural Research, National Institute of Allergy and Infectious Diseases; funder-id: http://dx.doi.org/10.13039/100006492Funder: Helsingin Yliopisto; funder-id: http://dx.doi.org/10.13039/100007797In the absence of effective antiviral therapy, HIV-1 evolves in response to the within-host environment, of which the immune system is an important aspect. During the earliest stages of infection, this process of evolution is very rapid, driven by a small number of CTL escape mutations. As the infection progresses, immune escape variants evolve under reduced magnitudes of selection, while competition between an increasing number of polymorphic alleles (i.e., clonal interference) makes it difficult to quantify the magnitude of selection acting upon specific variant alleles. To tackle this complex problem, we developed a novel multi-locus inference method to evaluate the role of selection during the chronic stage of within-host infection. We applied this method to targeted sequence data from the p24 and gp41 regions of HIV-1 collected from 34 patients with long-term untreated HIV-1 infection. We identify a broad distribution of beneficial fitness effects during infection, with a small number of variants evolving under strong selection and very many variants evolving under weaker selection. The uniquely large number of infections analysed granted a previously unparalleled statistical power to identify loci at which selection could be inferred to act with statistical confidence. Our model makes no prior assumptions about the nature of alleles under selection, such that any synonymous or non-synonymous variant may be inferred to evolve under selection. However, the majority of variants inferred with confidence to be under selection were non-synonymous in nature, and in most cases were have previously been associated with either CTL escape in p24 or neutralising antibody escape in gp41. We also identified a putative new CTL escape site (residue 286 in gag), and a region of gp41 (including residues 644, 648, 655 in env) likely to be associated with immune escape. Sites inferred to be under selection in multiple hosts have high within-host and between-host diversity although not all sites with high between-host diversity were inferred to be under selection at the within-host level. Our identification of selection at sites associated with resistance to broadly neutralising antibodies (bNAbs) highlights the need to fully understand the role of selection in untreated individuals when designing bNAb based therapies
- …