31 research outputs found
Prevalence of high affinity naturally occurring IgG2 antibodies against human chorionic gonadotropin and its subunits in patients with ovarian cyst
Naturally occurring antibodies to tumour antigens are gaining interest as clinically important cancer biomarkers for early diagnosis, prognosis and for the development of anti-cancer therapeutics. The glycoprotein αβ heterodimer hormone human chorionic gonadotropin (hCG) and its β subunit (hCGβ) are produced by various cancers, and their increased serum levels correlate with poor prognosis. We have previously reported that patients with benign ovarian cysts, but not the malignant tumours, were characterized by augmented serum levels of naturally-occurring IgG antibodies to hCG and hCGβ. Here we further characterise these antibodies in patients with ovarian cysts. IgG and IgM antibody binding to whole hCG, hCGβ, hCGα, hCGβ C-terminal peptide (hCGβCTP), and the hCGβ core fragment (hCGβCF) were measured in the sera from 36 patients with ovarian cysts and 12 healthy non-pregnant women using a standard ELISA. IgG subclass usage and affinity was also determined together with cross-binding to whole hCG and its subunits of four selected commercial monoclonal antibodies generated against ovarian cyst mucins. Our results showed that 91.7% of the sera tested contained elevated IgG, but not IgM antibodies to one or several antigens, with an overwhelming prevalence of high affinity IgG2 indicating their binding to carbohydrate epitopes and possibly ovarian cyst mucins. Anti-mucin commercial antibody ab212418 (Abcam) produced against Gal1-3GalNAc, exhibited strong cross-binding to hCGαβ, hCGβ, hCGα and hCGβCTP. The protective anti-cancer potential of these antibodies will be further investigated and could lead to the development of novel treatment strategies for ovarian cancer
Cytotoxic CD4+ T cells in patients with B cell chronic lymphocytic leukemia kill via a perforin-mediated pathway
Background and Objectives: B-cell chronic lymphocytic leukemia (B-CLL) is a clonal expansion of CD5+B cells that accumulate due to their uncontrolled growth and resistance
to apoptosis. We have previously shown that up to 50% of blood CD4+ T cells in BCLL patients have a cytotoxicity-related CD28-CD57+ phenotype and high content of both granzyme B and perforin (PF). In this study we investigate the cytotoxic potential of these cells against autologous B-CLL cells.
Design and Methods: Blood CD4+ or CD8+ T cells were positively isolated from B-CLL patients and cultured under a range of conditions with autologous purified B-CLL cells and with bispecific [anti-CD3 x anti-CD19] antibodies. Apoptosis of labeled B-CLL cells was assessed using the change of mitochondrial membrane potential with the fluorescent dye DiOC6 and confirmed by annexin V binding.
Results: There was time- and dose-dependent killing of B-CLL cells by both CD8+ and CD4+ T cells and this ranged from 6.6 - 68.0% for CD4+ cells and 6.4 - 57.8% for CD8+
cells. Almost complete inhibition by concanamycin A suggests that CD4+ T cells like CD8+ T cells induced apoptosis through a perforin-mediated pathway, but not via Fas/FasL (as indicated by lack of blocking with brefeldin A), tumor necrosis factor or TRAIL.
Interpretation and Conclusions: This study shows that blood CD4+PF+ T cells enriched in B-CLL patients, are able to kill autologous B-CLL cells ex vivo, through bispecific antibodies via a perforin mediated mechanism
Patients with B cell chronic lymphocytic leukaemia have an expanded population of CD4 perforin expressing T cells enriched for human cytomegalovirus specificity and an effector-memory phenotype
We have previously shown an expansion of cytotoxic antigen-experienced CD4(+)T cells (CTLs) that express perforin (PF) in the peripheral blood of patients with B cell chronic lymphocytic leukaemia (B-CLL). Increased frequencies of CD4(+)CTLs have since been attributed to chronic viral infections, particularly, human cytomegalovirus (HCMV). The present study examined the involvement of CD4(+)CTLs in responses to HCMV in B-CLL, and characterized their differentiation. We studied 36 HCMV seropositive (SP) and seronegative B-CLL patients and 20 healthy age-matched individuals. The HCMV reactivity of CD4(+)PF(+) and CD4(+)PF(-) cells was determined by interferon-gamma expression, and expression of CD45RA and CCR7 was assessed by flow cytometry. Fluorescence in-situ hybridization was used to measure relative telomere lengths. CD4(+)PF(+)T cell expansion in B-CLL patients and controls was strongly associated with HCMV seropositivity. CD4(+)PF(+) compared to CD4(+)PF(-) cells from SP B-CLL patients elicited major histocompatibility complex (MHC) class II-restricted responses to HCMV. CD4(+)PF(+)T cells from patients and controls were enriched with highly differentiated T-effector/memory (CCR7(-)) and revertant (CCR7(-)CD45RA(+)) phenotype. CD4(+)PF(+)T cells from B-CLL patients had shorter telomeres than CD4(+)PF(-)T cells, indicating an extensive replicative history. We conclude that persistent exposure to HCMV antigens in SP B-CLL patients leads to an expansion of the circulating MHC class II-restricted CD4(+)PF(+)T cell population with effector/memory phenotype.<br/
Expansion of CD4+ T cells with a cytotoxic phenotype in patients with B-chronic lymphocytic leukaemia (B-CLL)
Abnormal CD4/CD8 ratios and T-cell function have previously been shown in patients with B-chronic lymphocytic leukaemia (B-CLL). We have demonstrated that CD4+ T cells containing both serine esterase and perforin (PF) are increased in the blood of these patients. Using flow cytometry, we have shown that the CD4+ PF+ cells were CD57+ but lacked expression of CD28, suggesting a mature population. The same phenotype in CD8+ T cells is characteristic of mature cytotoxic T cells. However, in contrast to the CD8+ T cells, the CD4+ T cells were more frequently CD45RO positive than CD45RA positive, indicating prior antigen experience. In contrast, this population lacked expression of either CD69 or HLA-DR, arguing that they were not activated or that they are an abnormal population of T cells. Their constitutive cytokine levels showed them mainly to contain IL4 and not IFNγ, suggesting a Th2 phenotype. The role of the CD4+ PF+ T-cell population is at present uncertain. However, this potentially cytotoxic T-cell population could contribute both to enhancing survival of the B-CLL tumour cells through production of IL4, and to the immunodeficient state frequently seen in patients with this tumour, independent of drug treatment
Recent progress in the understanding of B-cell functions in autoimmunity
Our early concepts of the normal role of B cells in immunity focused on their ability to produce antibodies (Ab) and in the case of autoimmune diseases autoAbs, some of which were pathogenic. Over the past 10 years, it has became apparent that B cells display a variety of characteristics, other than Ab production, which could contribute to autoimmunity. They normally play a role in the development of lymphoid architecture, regulating T-cell subsets and dendritic cell (DC) function through cytokine production, and in activation of T cells. Receptors editing is also important in B cells which aids in immunity to infection and, possibly, prevention of autoimmunity. Transgenic animal models have now shown that B cells are necessary for many autoimmune diseases although their Ab products are not required in some cases. Negative signalling by CD5 and other molecules, such as CD22, in maintaining tolerance through recruitment of src-homology two domain-containing protein tyrosine phosphatase-1 has also been documented. In fact, we have now reached a new era whereby the B cell has returned as an important contributor to autoimmune disorders, so that the race is on to characterize signalling regulation via the B-cell receptor and coreceptors. Identification of such molecules and their potential defects should lead to effective ways of controlling the immune response and in particular preventing the development of autoimmune states. The classical view of B cells in the biology of immune responses to infectious and self-antigens (Ag) that they promote immunity primarily by producing Ab turns out to be rather naïve. Indeed, studies over the last few years indicate that this view is far from complete, and suggest that B lymphocytes have extraordinarily diverse functions within the immune system. Furthermore, it is becoming increasingly clear that the pathogenesis of autoimmune diseases cannot solely be accounted for by T cells, and intrinsic abnormalities of B cells have been described in such conditions. In this brief review we highlight some recent observations in the context of B lymphocyte in pathophysiology, and focus on their revival as pivotal players the pathophysiology in autoimmune diseases. Yet, it remains difficult to provide a model of how important B cells are in immunity and autoimmunity