60 research outputs found
Early Initiation of Colorectal Cancer Screening in Individuals with Affected First-degree Relatives
BACKGROUND: Several guidelines recommend initiating colorectal cancer screening at age 40 for individuals with affected first-degree relatives, yet little evidence exists describing how often these individuals receive screening procedures. OBJECTIVES: To determine the proportion of individuals in whom early initiation of colorectal cancer screening might be indicated and whether screening disparities exist. DESIGN: Population-based Supplemental Cancer Control Module to the 2000 National Health Interview Survey. PARTICIPANTS: Respondents, 5,564, aged 40 to 49 years were included within the analysis. MEASUREMENTS: Patient self-report of sigmoidoscopy, colonoscopy, or fecal occult blood test. RESULTS: Overall, 279 respondents (5.4%: 95% C.I., 4.7, 6.2) reported having a first-degree relative affected with colorectal cancer. For individuals with a positive family history, 67 whites (27.9%: 95% C.I., 21.1, 34.5) and 3 African American (9.3%: 95% C.I., 1.7, 37.9) had undergone an endoscopic procedure within the previous 10 years (P-value = .03). After adjusting for age, family history, gender, educational level, insurance status, and usual source of care, whites were more likely to be current with early initiation endoscopic screening recommendations than African Americans (OR = 1.38: 95% C.I., 1.01, 1.87). Having an affected first-degree relative with colorectal cancer appeared to have a stronger impact on endoscopic screening for whites (OR = 3.21: 95% C.I., 2.31, 4.46) than for African Americans (OR = 1.05: 95% C.I., 0.15, 7.21). CONCLUSIONS: White participants with a family history are more likely to have endoscopic procedures beginning before age 50 than African Americans
Functional Analysis of the Cathepsin-Like Cysteine Protease Genes in Adult Brugia malayi Using RNA Interference
Filarial nematodes are an important group of human pathogens, causing lymphatic filariasis and onchocerciasis, and infecting around 150 million people throughout the tropics with more than 1.5 billion at risk of infection. Control of filariasis currently relies on mass drug administration (MDA) programs using drugs which principally target the microfilarial life-cycle stage. These control programs are facing major challenges, including the absence of a drug with macrofilaricidal or permanent sterilizing activity, and the possibility of the development of drug-resistance against the drugs available. Cysteine proteases are essential enzymes which play important roles in a wide range of cellular processes, and the cathepsin-like cysteine proteases have been identified as potential targets for drug or vaccine development in many parasites. Here we have studied the function of several of the cathepsin-like enzymes in the filarial nematode, B. malayi, and demonstrate that these cysteine proteases are involved in the development of embryos, show similar functions to their counterparts in C. elegans, and therefore, provide an important target for future drug development targeted to eliminate filariasis
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Recommended from our members
Message-efficient dissemination for loop-free centralized routing
With steady improvement in the reliability and performance of communication devices, routing instabilities now contribute to many of the remaining service degradations and interruptions in modern networks. This has led to a renewed interest in centralized routing systems that, compared to distributed routing, can provide greater control over routing decisions and better visibility of the results. One benefit of centralized control is the opportunity to readily eliminate transient routing loops, which arise frequently after network changes because of inconsistent routing states across devices. Translating this conceptual simplicity into a solution with tolerable message complexity is non-trivial. Addressing this issue is the focus of this paper. We identify when and why avoiding transient loops might require a significant number of messages in a centralized routing system, and demonstrate that this is the case under many common failure scenarios. We also establish that minimizing the number of required messages is NP-hard, and propose a greedy heuristic that we show to perform well under many conditions. The paper\u27s results can facilitate the deployment and evaluation of centralized architectures by leveraging their strengths without incurring unacceptable overhead
Facile Preparation of Free-Standing Carbon Nanotube Arrays Produced Using Two-Step Floating-Ferrocene Chemical Vapor Deposition
A two-step floating-ferrocene chemical vapor deposition method has been devised for the preparation of single-layered aligned carbon nanotube (CNT) arrays. In the first step, uniform Fe catalysts are in situ produced and coated on a Si substrate from ferrocene; single-layered CNT arrays are prepared on these catalysts from ethylene in the second step. The effect of ferrocene loading on the distribution of Fe catalysts, as well as the morphology, diameter, and height of the CNT arrays, was investigated. A novel vacuum extraction process was employed to release the as-prepared CNT array from the Si wafer after water etching at 750 degrees C. The structural integrity of the free-standing arrays was preserved after the detachment process. The interface between the substrate and the as-grown CNT array was examined. The Fe catalyst distribution on the Si substrate remained homogeneous when the CNT array was removed, and the tops and bottoms of the arrays had different structures, suggesting that the arrays were formed predominantly by a base-growth mode. These free-standing arrays could potentially be applied in membrane or electronic applications. © 2011, American Chemical Society
Open-Ended Aligned Carbon Nanotube Arrays Produced Using CO(2)-Assisted Floating-Ferrocene Chemical Vapor Deposition
The influence of CO2, in concentrations of up to 7600 ppm, on the preparation of aligned carbon nanotube (CNT) arrays from ethylene using floating-ferrocene chemical vapor deposition (CVD) at 750 °C was investigated. The CO2-assisted floating-ferrocene CVD method facilitates the well-controlled growth of aligned CNT arrays; the quality of the aligned CNT arrays was significantly improved in the presence of CO2, as demonstrated by improved alignment and crystallinity. Under the assistance of CO2, CNT arrays were linear and vertical. CNTs grown with CO2 were also higher than those grown in the absence of CO2, with the optimum CO2 concentration of 760 ppm producing a 50% enhancement in CNT height. Varying the concentration of CO2 also controlled the diameter and wall numbers of the aligned CNTs. CNTs synthesized in the presence of 7600 ppm CO2 had a diameter of 8.0 ± 1.6 nm, and an average wall number of 4 ± 1. In particular, both open-ended and triple-walled CNTs were clearly observed. © 2011, American Chemical Societ
Removal of natural organic matter in water using functionalised carbon nanotube buckypaper
A simple, surfactant-free assembly process was used to prepare multi-wall carbon nanotube (CNT) buckypapers using a highly efficient purification, sonication, and filtration process. To achieve effective dispersion of CNT into ethanol, a minimum 5-min sonication time was required. Here, we fabricated a buckypaper with pore size of 41 +/- 10 nm and porosity of 72.9% with a 10-min sonication. The as-prepared buckypaper was used as a membrane for humic acid (HA) removal from water. During purification process, carboxylic and hydroxylic functional groups were introduced onto the CNT surface. The functional groups increased the hydrophilicity of the CNTs and improved the removal efficiency of HA by the buckypaper. The buckypaper prepared from purified CNTs exhibited excellent removal of HA (>93%) and a long lifetime for filtration. © 2013, Elsevier Ltd
- …