5 research outputs found

    Heterologous Expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] Hydrogenases in Synechococcus elongatus

    Get PDF
    Oxygen-tolerant [NiFe] hydrogenases may be used in future photobiological hydrogen production systems once the enzymes can be heterologously expressed in host organisms of interest. To achieve heterologous expression of [NiFe] hydrogenases in cyanobacteria, the two hydrogenase structural genes from Alteromonas macleodii Deep ecotype (AltDE), hynS and hynL, along with the surrounding genes in the gene operon of HynSL were cloned in a vector with an IPTG-inducible promoter and introduced into Synechococcus elongatus PCC7942. The hydrogenase protein was expressed at the correct size upon induction with IPTG. The heterologously-expressed HynSL hydrogenase was active when tested by in vitro H2 evolution assay, indicating the correct assembly of the catalytic center in the cyanobacterial host. Using a similar expression system, the hydrogenase structural genes from Thiocapsa roseopersicina (hynSL) and the entire set of known accessory genes were transferred to S. elongatus. A protein of the correct size was expressed but had no activity. However, when the 11 accessory genes from AltDE were co-expressed with hynSL, the T. roseopersicina hydrogenase was found to be active by in vitro assay. This is the first report of active, heterologously-expressed [NiFe] hydrogenases in cyanobacteria

    Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d'Arcachon and the Etang du Prévost, France

    No full text
    Enumeration of the functional groups of sulfur bacteria was performed in the sediments in the Bassin d'Arcachon, a mesotidal lagoon with strong tidal currents and dominant populations of seagrass (Zostera noltii), and in the Etang du Prevost, a shallow lagoon with moderate tidal fluctuations and dominant populations of floating seaweed (Ulva sp.). In addition, data were collected on the distribution of oxygen and sulfide at the water-sediment interface during diel cycles. Bacterial enumeration studies revealed highest numbers in the top two cm of the sediments for three functional groups of sulfur bacteria, these being the sulfate-reducing bacteria (SRB), the colorless sulfur bacteria (CSB), and the phototrophic sulfur bacteria (PSB). In both systems high numbers of SRB were encountered, suggesting ample availability of organic matter. A comparison between different sites in each ecosystem showed that sediments overlain by more stagnant water were dominated by PSB, whereas those overlain by more oxygenated water were dominated by CSB. Important factors are the physical forces induced by tidal currents and the degree of daily exchange of water between the lagoons and the sea. These factors may explain the differences observed between the two systems with regard to the development of anoxic conditions, more so than the level of eutrophication. It appears that rooted plants play an important role in the introduction of oxygen into the sediments, thus enhancing the competitive position of CSB compared to PSB. Mini-electrodes studies revealed high concentrations of free sulfide at the inner site of the Etang du Prevost but very low concentrations at the inner station of the Bassin d'Arcachon, which may be explained by the high iron input of the latter rather than by differences in the rate of sulfide production

    Hydrogenases and Hydrogen Metabolism in Photosynthetic Prokaryotes

    No full text
    corecore