2,643 research outputs found

    Scanning Electron Microscopic Aids For Identification Of Larval And Post-Larval Bivalves

    Get PDF
    The identification of bivalve larvae and early postlarvae in plankton and benthic samples has long been a challenge, hampering both basic and applied research efforts in marine, estuarine, and freshwater environments. The usefulness of published optical micrographs of the early life-history stages of bivalves is limited because of the great morphological similarity of the imaged articulated shells, particularly at the early (straight-hinge) developmental stages. While a number of techniques have been refined in recent years and show promise for use in routine identifications of larval and post-larval bivalves (e.g., single-step nested multiplex polymerase chain reaction; in situ hybridization protocols through color coding with taxon-specific, dye-labeled DNA probes; coupled fluorescence in situ hybridization and cell sorting; and image analysis techniques using species-specific shell birefringence patterns under polarized light), no adequate comprehensive reference source exists that accurately depicts the morphology and morphometry of the shells of larval and post-larval stages of target bivalve species in a consistent format to assist in identification of such stages. To this end, scanning electron micrograph (SEM) sequences are presented of the disarticulated shell valves of laboratory-reared larval and post-larval stages of 56 species of bivalve molluscs from a wide spectrum of marine, estuarine, and freshwater habitats. Emphasis is placed on the usefulness of the morphology and morphometrics of consistently-oriented, disarticulated shell valves and associated hinge structures in discriminating the early life-history stages of these various bivalve species. Although the scanning electron micrograph sequences presented accurately depict the gross morphologies/morphometrics and hinge structures of the disarticulated shell valves of the larvae and/or postlarvae of the 56 species of bivalves, it is important to emphasize that a scanning electron microscope is not necessary to observe even fine hinge structures associated with the early ontogenetic stages of these species. Such structures are readily visible using a wide range of optical compound microscopes equipped with high-intensity reflected light sources, although the disarticulated shell valves must be viewed in several planes of focus to discern the often subtle details seen clearly in the scanning electron micrographs. These morphological characters provide researchers with invaluable aids for the routine identification of the early life-history stages of these species isolated from plankton and benthic samples

    Negotiating daughterhood and strangerhood: retrospective accounts of serial migration

    Get PDF
    Most considerations of daughtering and mothering take for granted that the subjectivities of mothers and daughters are negotiated in contexts of physical proximity throughout daughters’ childhoods. Yet many mothers and daughters spend periods separated from each other, sometimes across national borders. Globally, an increasing number of children experience life in transnational families. This paper examines the retrospective narratives of four women who were serial migrants as children (whose parents migrated before they did) . It focuses on their accounts of the reunion with their mothers and how these fit with the ways in which they construct their mother-daughter relationships. We take a psychosocial approach by using a psychoanalytically-informed reading of these narratives to acknowledge the complexities of the attachments produced in the context of migration and to attend to the multi-layered psychodynamics of the resulting relationships. The paper argues that serial migration positioned many of the daughters in a conflictual emotional landscape from which they had to negotiate ‘strangerhood’ in the context of sadness at leaving people to whom they were attached in order to join their mothers (or parents). As a result, many were resistant to being positioned as daughters, doing daughtering and being mothered in their new homes

    Associations between Organochlorine Contaminant Concentrations and Clinical Health Parameters in Loggerhead Sea Turtles from North Carolina, USA

    Get PDF
    Widespread and persistent organochlorine (OC) contaminants, such as polychlorinated biphenyls (PCBs) and pesticides, are known to have broad-ranging toxicities in wildlife. In this study we investigated, for the first time, their possible health effects on loggerhead sea turtles (Caretta caretta). Nonlethal fat biopsies and blood samples were collected from live turtles for OC contaminant analysis, and concentrations were compared with clinical health assessment data, including hematology, plasma chemistry, and body condition. Concentrations of total PCBs (∑PCBs), ∑DDTs, ∑chlordanes, dieldrin, and mirex were determined in 44 fat biopsies and 48 blood samples. Blood concentrations of ∑chlordanes were negatively correlated with red blood cell counts, hemoglobin, and hematocrit, indicative of anemia. Positive correlations were observed between most classes of OC contaminants and white blood cell counts and between mirex and ∑TCDD-like PCB concentrations and the heterophil:lymphocyte ratio, suggesting modulation of the immune system. All classes of OCs in the blood except dieldrin were correlated positively with aspartate aminotransferase (AST) activity, indicating possible hepatocellular damage. Mirex and ∑TCDD-like PCB blood concentrations were negatively correlated with alkaline phosphatase (ALP) activity. Significant correlations to levels of certain OC contaminant classes also suggested possible alteration of protein (↑blood urea nitrogen, ↓albumin:globulin ratio), carbohydrate (↓glucose), and ion (↑sodium, ↓magnesium) regulation. These correlations suggest that OC contaminants may be affecting the health of loggerhead sea turtles even though sea turtles accumulate lower concentrations of OCs compared with other wildlife

    Extraordinarily high biomass benthic community on Southern Ocean seamounts

    Get PDF
    We describe a previously unknown assemblage of seamount-associated megabenthos that has by far the highest peak biomass reported in the deep-sea outside of vent communities. The assemblage was found at depths of 2–2.5 km on rocky geomorphic features off the southeast coast of Australia, in an area near the Sub-Antarctic Zone characterised by high rates of surface productivity and carbon export to the deep-ocean. These conditions, and the taxa in the assemblage, are widely distributed around the Southern mid-latitudes, suggesting the high-biomass assemblage is also likely to be widespread. The role of this assemblage in regional ecosystem and carbon dynamics and its sensitivities to anthropogenic impacts are unknown. The discovery highlights the lack of information on deep-sea biota worldwide and the potential for unanticipated impacts of deep-sea exploitation

    Out of Mind, Out of Sight: Language Affects Perceptual Vividness in Memory

    Get PDF
    We examined whether language affects the strength of a visual representation in memory. Participants studied a picture, read a story about the depicted object, and then selected out of two pictures the one whose transparency level most resembled that of the previously presented picture. The stories contained two linguistic manipulations that have been demonstrated to affect concept availability in memory, i.e., object presence and goal-relevance. The results show that described absence of an object caused people to select the most transparent picture more often than described presence of the object. This effect was not moderated by goal-relevance, suggesting that our paradigm tapped into the perceptual quality of representations rather than, for example, their linguistic availability. We discuss the implications of these findings within a framework of grounded cognition

    Size constancy in bat biosonar?

    Get PDF
    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats

    Expanding dispersal studies at hydrothermal vents through species identification of cryptic larval forms

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 157 (2010): 1049-1062, doi:10.1007/s00227-009-1386-8.The rapid identification of hydrothermal vent-endemic larvae to the species level is a key limitation to understanding the dynamic processes that control the abundance and distribution of fauna in such a patchy and ephemeral environment. Many larval forms collected near vents, even those in groups such as gastropods that often form a morphologically distinct larval shell, have not been identified to species. We present a staged approach that combines morphological and molecular identification to optimize the capability, efficiency, and economy of identifying vent gastropod larvae from the northern East Pacific Rise (NEPR). With this approach, 15 new larval forms can be identified to species. A total of 33 of the 41 gastropod species inhabiting the NEPR, and 26 of the 27 gastropod species known to occur specifically in the 9° 50’ N region, can be identified to species. Morphological identification efforts are improved by new protoconch descriptions for Gorgoleptis spiralis, Lepetodrilus pustulosus, Nodopelta subnoda, and Echinopelta fistulosa. Even with these new morphological descriptions, the majority of lepetodrilids and peltospirids require molecular identification. Restriction fragment length polymorphism digests are presented as an economical method for identification of five species of Lepetodrilus and six species of peltospirids. The remaining unidentifiable specimens can be assigned to species by comparison to an expanded database of 18S ribosomal DNA. The broad utility of the staged approach was exemplified by the revelation of species-level variation in daily planktonic samples and the identification and characterization of egg capsules belonging to a conid gastropod Gymnobela sp. A. The improved molecular and morphological capabilities nearly double the number of species amenable to field studies of dispersal and population connectivity.Funding was provided by as Woods Hole Oceanographic Institution Deep Ocean Exploration Institute grant to L.M and S. Beaulieu, National Science Foundation grants OCE-0424953, OCE-9712233, and OCE-9619605 to L.M, OCE-0327261 to T.S., and OCE-0002458 to K. Von Damm, and a National Defense Science and Engineering Graduate fellowship to D.A

    The secreted triose phosphate isomerase of Brugia malayi is required to sustain microfilaria production in vivo

    Get PDF
    Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI), a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60–70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNγ expression by CD4+ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections

    The Cosmic Infrared Background: Measurements and Implications

    Get PDF
    The cosmic infrared background records much of the radiant energy released by processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In the past few years, data from the Cosmic Background Explorer mission provided the first measurements of this background, with additional constraints coming from studies of the attenuation of TeV gamma-rays. At the same time there has been rapid progress in resolving a significant fraction of this background with the deep galaxy counts at infrared wavelengths from the Infrared Space Observatory instruments and at submillimeter wavelengths from the Submillimeter Common User Bolometer Array instrument. This article reviews the measurements of the infrared background and sources contributing to it, and discusses the implications for past and present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of Astronomy and Astrophysics, 2001, Vol. 3

    Differential Effects of Attention-, Compassion-, and Socio-Cognitively Based Mental Practices on Self-Reports of Mindfulness and Compassion

    Get PDF
    Research on the effects of mindfulness- and compassion-based interventions is flourishing along with self-report scales to assess facets of these broad concepts. However, debates remain as to which mental practices are most appropriate to develop the attentional, cognitive, and socio-affective facets of mindfulness and compassion. One crucial question is whether present-moment, attention-focused mindfulness practices are sufficient to induce a cascade of changes across the different proposed facets of mindfulness, including nonjudgmental acceptance, as well as compassion or whether explicit socio-affective training is required. Here, we address these questions in the context of a 9-month longitudinal study (the ReSource Project) by examining the differential effects of three different 3-month mental training modules on subscales of mindfulness and compassion questionnaires. The “Presence” module, which aimed at cultivating present-moment-focused attention and body awareness, led to increases in the observing, nonreacting, and presence subscales, but not to increases in acceptance or nonjudging. These latter facets benefitted from specific cultivation through the socio-cognitive “Perspective” module and socio-affective, compassion-based “Affect” module, respectively. These modules also led to further increases in scores on the subscales affected by the Presence module. Moreover, scores on the compassion scales were uniquely influenced by the Affect module. Thus, whereas a present-moment attention-focused training, as implemented in many mindfulness-based programs, was indeed able to increase attentional facets of mindfulness, only socio-cognitive and compassion-based practices led to broad changes in ethical-motivational qualities like a nonjudgmental attitude, compassion, and self-compassion
    corecore