14 research outputs found

    Eating Disorders: An Evolutionary Psychoneuroimmunological Approach

    Get PDF
    Eating disorders are evolutionarily novel conditions. They lead to some of the highest mortality rates of all psychiatric disorders. Several evolutionary hypotheses have been proposed for eating disorders, but only the intrasexual competition hypothesis is extensively supported by evidence. We present the mismatch hypothesis as a necessary extension to the current theoretical framework of eating disorders. This hypothesis explains the evolutionarily novel adaptive metaproblem that has arisen when mating motives conflict with the large-scale and easy availability of hyper-rewarding but obesogenic foods. This situation is exacerbated particularly in those contemporary environments that are characterized by sedentary lifestyles, ever-present junk foods, caloric surplus and the ubiquity of social comparisons that take place via social media. Our psychoneuroimmunological model connects ultimate-level causation with proximate mechanisms by showing how the adaptive metaproblem between mating motives and food rewards leads to chronic stress and, further, to disordered eating. Chronic stress causes neuroinflammation, which increases susceptibility to OCD-like behaviors that typically co-occur with eating disorders. Chronic stress upregulates the serotonergic system and causes dysphoric mood in anorexia nervosa patients. Dieting, however, reduces serotonin levels and dysphoric mood, leading to a vicious serotonergic-homeostatic stress/starvation cycle whereby cortisol and neuroinflammation increase through stringent dieting. Our psychoneuroimmunological model indicates that between-individual and within-individual variation in eating disorders partially arises from (co)variation in gut microbiota and stress responsivity, which influence neuroinflammation and the serotonergic system. We review the advances that have been made in recent years in understanding how to best treat eating disorders, outlining directions for future clinical research. Current evidence indicates that eating disorder treatments should aim to reduce the chronic stress, neuroinflammation, stress responsivity and gut dysbiosis that fuel the disorders. Connecting ultimate causes with proximate mechanisms and treating biopsychosocial causes rather than manifest symptoms is expected to bring more effective and sophisticated long-term interventions for the millions of people who suffer from eating disorders

    Developing a predictive modelling capacity for a climate change-vulnerable blanket bog habitat: Assessing 1961-1990 baseline relationships

    Get PDF
    Aim: Understanding the spatial distribution of high priority habitats and developing predictive models using climate and environmental variables to replicate these distributions are desirable conservation goals. The aim of this study was to model and elucidate the contributions of climate and topography to the distribution of a priority blanket bog habitat in Ireland, and to examine how this might inform the development of a climate change predictive capacity for peat-lands in Ireland. Methods: Ten climatic and two topographic variables were recorded for grid cells with a spatial resolution of 1010 km, covering 87% of the mainland land surface of Ireland. Presence-absence data were matched to these variables and generalised linear models (GLMs) fitted to identify the main climatic and terrain predictor variables for occurrence of the habitat. Candidate predictor variables were screened for collinearity, and the accuracy of the final fitted GLM was evaluated using fourfold cross-validation based on the area under the curve (AUC) derived from a receiver operating characteristic (ROC) plot. The GLM predicted habitat occurrence probability maps were mapped against the actual distributions using GIS techniques. Results: Despite the apparent parsimony of the initial GLM using only climatic variables, further testing indicated collinearity among temperature and precipitation variables for example. Subsequent elimination of the collinear variables and inclusion of elevation data produced an excellent performance based on the AUC scores of the final GLM. Mean annual temperature and total mean annual precipitation in combination with elevation range were the most powerful explanatory variable group among those explored for the presence of blanket bog habitat. Main conclusions: The results confirm that this habitat distribution in general can be modelled well using the non-collinear climatic and terrain variables tested at the grid resolution used. Mapping the GLM-predicted distribution to the observed distribution produced useful results in replicating the projected occurrence of the habitat distribution over an extensive area. The methods developed will usefully inform future climate change predictive modelling for Irelan

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania

    Get PDF
    Expansion of urban fabric on carbon storages is estimated to cause loss of 1.38 Pg of Above-Ground Carbon (AGC) in pan-tropics between 2000 and 2030. This would be approximately 5% of all emissions caused by tropical land use changes. Despite the significance of the phenomenon, these emissions are rarely measured, monitored, or addressed in climate change mitigation plans, especially in Sub-Saharan Africa. Therefore, we demonstrated a state-of-the-art approach predicting AGC loss of Zanzibar City Region under multiple alternative urban planning scenarios between 2013 and 2030. The AGC information was modeled based on field measured forest inventory sample plots and RapidEye satellite data from 2013, while the future urban expansion model was calibrated with data of happened expansion between 2004, 2009 and 2013, and geospatial independent variables influencing the expansion patterns. This model was then projected until 2030, while alternative urban planning scenarios were integrated to the model by modifying the geospatial variables. The combination of these two models indicates that 42,000 Mg or 15% of total AGC in Zanzibar City Region can be anticipated to be lost by 2030 due to urban expansion. Majority of the loss will take place in the agroforest and fruit tree plantations surrounding the city, while natural forest face limited impacts. None of the tested alternative urban planning scenarios significantly impact the loss of AGC compared to the business-as-usual scenario. Therefore, alternative policies and plans are seriously needed to address the issue in Zanzibar. These could include promoting urban densification, directing urban expansion to low carbon areas, improving soil carbon management, and preparing an urban forestry and greenery strategy. All in all, the study indicates that data and methods are available for monitoring and predicting the phenomenon in Sub-Saharan Africa. Research based on a comparable methodology should be produced from all the main cities in the region that are surrounded by significant carbon storages and facing high urban expansion rates to support climate change mitigation.Peer reviewe

    Permafrost dynamics structure species compositions of oribatid mite (Acari: Oribatida) communities in sub-Arctic palsa mires

    No full text
    Palsa mires are sub-Arctic peatland complexes, vulnerable ecosystems with patches of permafrost. Permafrost thawing in palsa mires occurs throughout Fennoscandia, probably due to local climatic warming. In palsa mires, permafrost thaw alters hydrological conditions, vegetation structure and microhabitat composition with unknown consequences for invertebrate fauna. This study's objectives were to examine the role of microhabitat heterogeneity and the effects of permafrost dynamics and thaw on oribatid mite communities in palsa mires. Oribatid mites were sampled in two palsa mires in Finland and Norway. Three different types of microhabitats were examined: graminoid-dominated wet sites, herb-dominated small hummocks and evergreen shrub-dominated permafrost-underlain palsa hummocks. The results indicate that permafrost dynamics are an important factor structuring oribatid mite communities in palsa mires. The community composition of oribatid mites differed remarkably among microhabitats. Six species were significantly more abundant in permafrost-underlain microhabitats in relation to non-permafrost microhabitats. None of the species identified occurred exclusively in permafrost-underlain microhabitats. Findings suggest that permafrost thaw may not have an impact on species diversity but may alter community composition of oribatid mites in palsa mire ecosystems
    corecore