4 research outputs found

    Impact of large amounts of wind power on the operation of an electricity generation system : Belgian case study

    No full text
    Wind power can have considerable impacts on the operation of electricity generation systems. Energy from wind power replaces other forms of electricity generation, thereby lowering overall fuel costs and greenhouse gas (GHG) emissions. However, the intermittency of wind power, reflected in its variability and relative unpredictability restrains the full potential benefits of wind power. The variable nature of wind power requires power plants to be ready for bridging moments of low wind power output. The occurrence of forecast errors for wind speed necessitates sufficient reserve capacity in the system, which cannot be used for other useful purposes. These forecast errors inevitably cause efficiency losses in the operation of the system. To analyse the extent of these impacts, the Belgian electricity generation system is taken as a case and investigated on different aspects such as technical limitations for wind power integration and cost and GHG emissions’ reduction potential of wind power under different circumstances

    Considerations on the backup of wind power: Operational backup

    No full text
    The introduction of wind power into an electricity-generation system on a large scale brings about challenges for the evolution and operation of this system: backup for wind power becomes a necessity. This paper defines various elements that come into play when considering backup for electricity generation from wind power. The backup is split up in capacity backup and operational backup. The focus is set on the short-term, operational aspects of the backup provision. The effects of several short-term operation related parameters are defined and analysed. Most relevant parameters for the operation and needs for wind power backup are the load profiles, the wind power output profiles and the total amount of installed wind power. These are analysed by means of a Mixed Integer Linear Programming (MILP) model through two different methods for operational backup provision, comparing the incremental cost, generated by both methods. The first method applies wind power backup through a 100% provision of additional spinning reserves. The second method does not foresee any spinning reserve and relies on the balancing by the Transmission System Operator (TSO). Both methods result in different additional charges that are being affected by the said parameters. Both the wind profile and the total amount of installed wind power are positively related to the relative cost increase. The load profile is negatively correlated to this increase. The relationship between these parameters and the development of the incremental cost provides an understanding that allows finding better equilibria in the operational backup of wind power.Wind power Backup Operational Electricity-generation system Short run MILP

    Influence of massive heat-pump introduction on the electricity-generation mix and the GHG effect: Comparison between Belgium, France, Germany and The Netherlands

    No full text
    To evaluate the environmental impact of massive heat-pump introduction on greenhouse gas (GHG) emissions in different electricity-generation systems, dynamic simulations have been carried out for four European countries, namely, Belgium, France, Germany and the Netherlands. For this purpose, the simulations are performed with Promix, a tool that models the overall electricity-generation system. Three heating devices are considered for each country, namely classic fossil-fuel heating, heat pumps and electric resistance heating. Both direct heat-pump heating with a coefficient of performance (COP) of 2.5 and accumulation heat-pump heating with a COP of 5 are investigated. The introduction of electric heating in an electricity-generation system increases the demand for electricity and generates a shift of emissions from fossil-fuel heating systems to electrical plants. The results of the simulations reveal that the massive introduction of either heat pump or resistance heating is always favourable to the environment in France. The most environmentally friendly scenario in 2010 is projected to reduce GHG emissions by about 3.8 Mton compared to the reference scenario. In Belgium and Germany, the largest reduction in GHG emissions occurs with accumulation heat pumps. Belgium can save up to 220 kton of GHG emissions, while Germany can attain reductions of 800 kton in 2010. In the Netherlands, a significant reduction can be achieved by considering the addition of gas-fired combined cycle (CC) power plants, together with the introduction of electric heating, resulting in emissions savings of 410 kton.Heat pump Greenhouse gas (GHG) Electricity-generation system Belgium France Germany The Netherlands Dynamic simulation Promix

    Impact of large amounts of wind power on the operation of an electricity generation system: Belgian case study

    No full text
    Wind power can have considerable impacts on the operation of electricity generation systems. Energy from wind power replaces other forms of electricity generation, thereby lowering overall fuel costs and greenhouse gas (GHG) emissions. However, the intermittency of wind power, reflected in its variability and relative unpredictability restrains the full potential benefits of wind power. The variable nature of wind power requires power plants to be ready for bridging moments of low wind power output. The occurrence of forecast errors for wind speed necessitates sufficient reserve capacity in the system, which cannot be used for other useful purposes. These forecast errors inevitably cause efficiency losses in the operation of the system. To analyse the extent of these impacts, the Belgian electricity generation system is taken as a case and investigated on different aspects such as technical limitations for wind power integration and cost and GHG emissions' reduction potential of wind power under different circumstances.Wind power Operational cost reduction Greenhouse gas Technical barriers
    corecore