91,488 research outputs found
Triaxial nuclear models and the outer crust of nonaccreting cold neutron stars
The properties and composition of the outer crust of nonaccreting cold
neutron stars are studied by applying the model of Baym, Pethick, and
Sutherland (BPS) and taking into account for the first time triaxial
deformations of nuclei. Two theoretical nuclear models, Hartree-Fock plus
pairing in the BCS approximation (HF-BCS) with Skyrme SLy6 parametrization and
Hartree-Fock-Bogolyubov (HFB) with Gogny D1S force, are used to calculate the
nuclear masses. The two theoretical calculations are compared concerning their
neutron drip line, binding energies, magic neutron numbers, and the sequence of
nuclei in the outer crust of nonaccreting cold neutron stars, with special
emphasis on the effect of triaxial deformations. The BPS model is extended by
the higher-order corrections for the atomic binding, screening, exchange and
zero-point energies. The influence of the higher-order corrections on the
sequence of the outer crust is investigated.Comment: 7 page
In-medium electron-nucleon scattering
In-medium nucleon electromagnetic form factors are calculated in the quark
meson coupling model. The form factors are typically found to be suppressed as
the density increases. For example, at normal nuclear density and , the nucleon electric form factors are reduced by approximately 8%
while the magnetic form factors are reduced by only 1 - 2%. These variations
are consistent with current experimental limits but should be tested by more
precise experiments in the near future.Comment: 14 pages, latex, 3 figure
- …
