3,804 research outputs found
Cost-effective low-delay cloud video conferencing
The cloud computing paradigm has been advocated in recent video conferencing system design, which exploits the rich on-demand resources spanning multiple geographic regions of a distributed cloud, for better conferencing experience. A typical architectural design in cloud environment is to create video conferencing agents, i.e., virtual machines, in each cloud site, assign users to the agents, and enable inter-user communication through the agents. Given the diversity of devices and network connectivities of the users, the agents may also transcode the conferencing streams to the best formats and bitrates. In this architecture, two key issues exist on how to effectively assign users to agents and how to identify the best agent to perform a transcoding task, which are nontrivial due to the following: (1) the existing proximity-based assignment may not be optimal in terms of inter-user delay, which fails to consider the whereabouts of the other users in a conferencing session; (2) the agents may have heterogeneous bandwidth and processing availability, such that the best transcoding agents should be carefully identified, for cost minimization while best serving all the users requiring the transcoded streams. To address these challenges, we formulate the user-to-agent assignment and transcoding-agent selection problems, which targets at minimizing the operational cost of the conferencing provider while keeping the conferencing delay low. The optimization problem is combinatorial in nature and difficult to solve. Using Markov approximation framework, we design a decentralized algorithm that provably converges to a bounded neighborhood of the optimal solution. An agent ranking scheme is also proposed to properly initialize our algorithm so as to improve its convergence. The results from a prototype system implementation show that our design in a set of Internet-scale scenarios reduces the operational cost by 77% as compared to a commonly-adopted alternative, while simultaneously yielding lower conferencing delays.published_or_final_versio
Associations of perceived interparental relationship, family harmony and family happiness with smoking intention in never-smoking Chinese children and adolescents: a cross-sectional study
published_or_final_versio
Asymptotic normality of the Parzen-Rosenblatt density estimator for strongly mixing random fields
We prove the asymptotic normality of the kernel density estimator (introduced
by Rosenblatt (1956) and Parzen (1962)) in the context of stationary strongly
mixing random fields. Our approach is based on the Lindeberg's method rather
than on Bernstein's small-block-large-block technique and coupling arguments
widely used in previous works on nonparametric estimation for spatial
processes. Our method allows us to consider only minimal conditions on the
bandwidth parameter and provides a simple criterion on the (non-uniform) strong
mixing coefficients which do not depend on the bandwith.Comment: 16 page
Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR.
The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR
Landscape of stimulation-responsive chromatin across diverse human immune cells.
A hallmark of the immune system is the interplay among specialized cell types transitioning between resting and stimulated states. The gene regulatory landscape of this dynamic system has not been fully characterized in human cells. Here we collected assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing data under resting and stimulated conditions for up to 32 immune cell populations. Stimulation caused widespread chromatin remodeling, including response elements shared between stimulated B and T cells. Furthermore, several autoimmune traits showed significant heritability in stimulation-responsive elements from distinct cell types, highlighting the importance of these cell states in autoimmunity. Allele-specific read mapping identified variants that alter chromatin accessibility in particular conditions, allowing us to observe evidence of function for a candidate causal variant that is undetected by existing large-scale studies in resting cells. Our results provide a resource of chromatin dynamics and highlight the need to characterize the effects of genetic variation in stimulated cells
Single virus detection on silicon photonic crystal random cavities
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordData Availability Statement:
The data that support the findings of this study are available from the corresponding author upon reasonable request.On-chip silicon microcavity sensors are advantageous for the detection of virus and biomolecules due to their compactness and the enhanced light–matter interaction with the analyte. While their theoretical sensitivity is at the single-molecule level, the fabrication of high quality (Q) factor silicon cavities and their integration with optical couplers remain as major hurdles in applications such as single virus detection. Here, label-free single virus detection using silicon photonic crystal random cavities is proposed and demonstrated. The sensor chips consist of free-standing silicon photonic crystal waveguides and do not require pre-fabricated defect cavities or optical couplers. Residual fabrication disorder results in Anderson-localized cavity modes which are excited by a free space beam. The Q ≈105 is sufficient for observing discrete step-changes in resonance wavelength for the binding of single adenoviruses (≈50 nm radius). The authors’ findings point to future applications of CMOS-compatible silicon sensor chips supporting Anderson-localized modes that have detection capabilities at the level of single nanoparticles and molecules.Engineering and Physical Sciences Research Council (EPSRC
Structure of the hDmc1-ssDNA filament reveals the principles of its architecture
In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination
A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials
We report a general strategy for synthesis of a large variety of metal oxide nanoparticles on different carbon nanomaterials (CNMs), including single-walled carbon nanotubes, multi-walled carbon nanotubes, and a few-layer graphene. The approach was based on the π-π interaction between CNMs and modified aromatic organic ligands, which acted as bridges connecting metal ions and CNMs. Our methods can be applicable for a large variety of metal ions, thus offering a great potential application
Taming non-radiative recombination in Si nanocrystals interlinked in a porous network
A range of the distinctive physical properties, comprising high surface-to-volume ratio, possibility to achieve mechanical and chemical stability after a tailored treatment, controlled quantum confinement and the room-temperature photoluminescence, combined with mass production capabilities offer porous silicon unmatched capabilities required for the development of electro-optical devices. Yet, the mechanism of the charge carrier dynamics remains poorly controlled and understood. In particular, non-radiative recombination, often the main process of the excited carrier's decay, has not been adequately comprehended to this day. Here we show, that the recombination mechanism critically depends on the composition of surface passivation. That is, hydrogen passivated material exhibits Shockley–Read–Hall type of decay, while for oxidised surfaces, it proceeds by two orders of magnitude faster and exclusively through the Auger process. Moreover, it is possible to control the source of recombination in the same sample by applying a cyclic sequence of hydrogenation–oxidation–hydrogenation processes, and, consequently switching on-demand between Shockley–Read–Hall and Auger recombinations. Remarkably, irregardless of the recombination mechanism, the rate constant scales inversely with the average volume of individual silicon nanocrystals contained in the material. Thus, the type of the non-radiative recombination is established by the composition of the passivation, while its rate depends on the degree of the charge carriers’ quantum confinement
Experimental evaluation of cohesive and adhesive bond strength and fracture energy of bitumen-aggregate systems
Degradation of asphalt pavements is an inevitable phenomenon due to the combined effects of high traffic loads and harsh environmental conditions. Deterioration can be in the form of cohesive failure of the bitumen and/or bitumen-filler mastic or by adhesive failure between bitumen and aggregate. This paper presents an experimental investigation to characterise the cohesive and adhesive strength and fracture energy of bitumen-aggregate samples. The pneumatic adhesion tensile testing instrument test and the peel test were used to quantify the tensile fracture strength and fracture energy of different bitumen-aggregate combinations, with a view to analyse the influence of several parameters on the strength of the bitumen film or bitumen-aggregate interface. From the experimental results, harder (40/60 pen) bitumen tends to show much higher tensile strength and fracture energy than softer (70/100 pen) bitumen. Tensile strength is shown to be sensitive to testing temperature with the failure regime changing from cohesive to mixed cohesive/adhesive failure with decreasing temperature. In addition, the results show that aggregate properties do not influence the bonding strength if cohesive failure occurs, but with adhesive failure, granite aggregate tends to produce a higher bonding strength than limestone aggregate in the dry condition. In terms of the peel test, the fracture energy experienced an increasing trend with increasing film thickness. However, the normalised toughness decreased when film thickness increased from 0.2 to 0.9 mm
- …