2 research outputs found

    Using next-generation sequencing to contrast the diet and explore pest-reduction services of sympatric bird species in macadamia orchards in Australia

    No full text
    Worldwide, avian communities inhabiting agro-ecosystems are threatened as a consequence of agricultural intensification. Unravelling their ecological role is essential to focus conservation efforts. Dietary analysis can elucidate bird-insect interactions and expose avian pest-reduction services, thus supporting avian conservation. In this study, we used next-generation sequencing to analyse the dietary arthropod contents of 11 sympatric bird species foraging in macadamia orchards in eastern Australia. Across all species and based on arthropod DNA sequence similarities ≥98% with records in the Barcode of Life Database, 257 operational taxonomy units were assigned to 8 orders, 40 families, 90 genera and 89 species. These taxa included 15 insect pests, 5 of which were macadamia pests. Among the latter group, Nezara viridula (Pentatomidae; green vegetable bug), considered a major pest, was present in 23% of all faecal samples collected. Results also showed that resource partitioning in this system is low, as most bird species shared large proportion of their diets by feeding primarily on lepidopteran, dipteran and arachnids. Dietary composition differed between some species, most likely because of differences in foraging behaviour. Overall, this study reached a level of taxonomic resolution never achieved before in the studied species, thus contributing to a significant improvement in the avian ecological knowledge. Our results showed that bird communities prey upon economically important pests in macadamia orchards. This study set a precedent by exploring avian pest-reduction services using next-generation sequencing, which could contribute to the conservation of avian communities and their natural habitats in agricultural systems. © 2016 Crisol-Martínez et al

    A low dose of an organophosphate insecticide causes dysbiosis and sex-dependent responses in the intestinal microbiota of the Japanese quail (Coturnix japonica)

    No full text
    Organophosphate insecticides have been directly or indirectly implicated in avian populations declining worldwide. Birds in agricultural environments are commonly exposed to these insecticides, mainly through ingestion of invertebrates after insecticide application. Despite insecticide exposure in birds occurring mostly by ingestion, the impact of organophosphates on the avian digestive system has been poorly researched. In this work we used the Japanese quail (Coturnix japonica) as an avian model to study short-term microbial community responses to a single dose of trichlorfon at low concentration in three sample origins of the gastrointestinal tract (GIT): caecum, large intestine and faeces. Using next-generation sequencing of 16S rRNA gene amplicons as bacterial markers, the study showed that ingestion of insecticide caused significant changes in the GIT microbiome. Specifically, microbiota composition and diversity differed between treated and untreated quail. Insecticide-associated responses in the caecum showed differences between sexes which did not occur with the other sample types. In caecal microbiota, only treated females showed significant shifts in a number of genera within the Lachnospiraceae and the Enterobacteriaceae families. The major responses in the large intestine were a significant reduction in the genus Lactobacillus and increases in abundance of a number of Proteobacteria genera. All microbial shifts in faeces occurred in phylotypes that were represented at low relative abundances. In general, changes in microbiota possibly resulted from contrasting responses towards the insecticide, either positive (e.g., biodegrading bacteria) or negative (e.g., insecticide-susceptible bacteria). This study demonstrates the significant impact that organophosphate insecticides have on the avian gut microbiota; showing that a single small dose of trichlorfon caused dysbiosis in the GIT of the Japanese quail. Further research is necessary to understand the implications on birds' health, especially in females. © 2016 Crisol-Martínez et al
    corecore