7 research outputs found

    Endothelial dysfunction in neuroprogressive disorders—causes and suggested treatments

    Get PDF
    Background: Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. Main text: Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. Conclusions: Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders

    Severity of Depression, Anxious Distress and the Risk of Cardiovascular Disease in a Swedish Population-Based Cohort.

    Get PDF
    Background: Depression is known to be associated with cardiovascular diseases (CVD). This population-based cohort study aimed to determine the association between depression of varying severity and risk for CVD and to study the effect of concomitant anxious distress on this association. Methods: We utilized data from a longitudinal cohort study of mental health, work and relations among adults (20–64 years), with a total of 10,443 individuals. Depression and anxious distress were assessed using psychiatric rating scales and defined according to DSM-5. Outcomes were register-based and self-reported cardiovascular diseases. Findings: Overall increased odds ratios of 1.5 to 2.6 were seen for the different severity levels of depression, with the highest adjusted OR for moderate depression (OR 2.1 (95% CI 1.3, 3.5). Similar odds ratios were seen for sub-groups of CVD: ischemic/hypertensive heart disease and stroke, 2.4 (95% CI 1.4, 3.9) and OR 2.1 (95%CI 1.2, 3.8) respectively. Depression with anxious distress as a specifier of severity showed OR of 2.1 (95% CI 1.5, 2.9) for CVD. Conclusion: This study found that severity level of depression seems to be of significance for increased risk of CVD among depressed persons, although not in a dose-response manner which might be obscured due to treatment of depression. Further, we found a higher risk of CVD among depressed individuals with symptoms of anxious distress

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    A second update on mapping the human genetic architecture of COVID-19

    Get PDF

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore