91 research outputs found

    Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity

    Get PDF
    MDM2–MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2–MDMX–E2(UbcH5B)–ubiquitin complex, we designed MDM2 mutants that prevent E2–ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53′s transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors

    Influence of Dll4 via HIF-1α-VEGF Signaling on the Angiogenesis of Choroidal Neovascularization under Hypoxic Conditions

    Get PDF
    Choroidal neovascularization (CNV) is the common pathological basis of irreversible visual impairment encountered in a variety of chorioretinal diseases; the pathogenesis of its development is complicated and still imperfectly understood. Recent studies indicated that delta-like ligand 4 (Dll4), one of the Notch family ligands might participate in the HIF-1α-VEGF pathway to regulate CNV angiogenesis. But little is known about the influence and potential mechanism of Dll4/Notch signals on CNV angiogenesis. Real-time RT-PCR, Western blotting were used to analyze the expression alteration of Dll4, VEGF and HIF-1α in hypoxic RF/6A cells. Immunofluorescence staining, a laser-induced rat CNV model and intravitreal injection techniques were used to confirm the relationships among these molecules in vitro and in vivo. RPE-RF/6A cell co-culture systems were used to investigate the effects of Dll4/Notch signals on CNV angiogenesis. We found that the Dll4 was involved in hypoxia signaling in CNV angiogenesis. Results from the co-culture system showed that the enhancement of Dll4 expression in RF/6A cells led to the significantly faster proliferation and stronger tube forming ability, but inhibited cells migration and invasion across a monolayer of RPE cells in hypoxic environment, while siRNA-mediated Dll4 silencing caused the opposite effects. Pharmacological disruption of Notch signaling using gamma-secretase inhibitor (GSI) produced similar, but not identical effects, to that caused by the Dll4 siRNA. In addition, the expression of several key molecules involved in the angiogenesis of CNV was altered in RF/6A cells showing constitutively active Dll4 expression. These results suggest that Dll4 play an important role in CNV angiogenesis, which appears to be regulated by HIF-1α and VEGF during the progression of CNV under hypoxic conditions. Targeting Dll4/Notch signaling may facilitate further understanding of the mechanisms that underlie CNV angiogenesis

    Enhanced control of self-doping in halide perovskites for improved thermoelectric performance

    Get PDF
    Metal halide perovskites have emerged as promising photovoltaic materials, but, despite ultralow thermal conductivity, progress on developing them for thermoelectrics has been limited. Here, we report the thermoelectric properties of all-inorganic tin based perovskites with enhanced air stability. Fine tuning the thermoelectric properties of the films is achieved by self-doping through the oxidation of tin (ΙΙ) to tin (ΙV) in a thin surface-layer that transfers charge to the bulk. This separates the doping defects from the transport region, enabling enhanced electrical conductivity. We show that this arises due to a chlorine-rich surface layer that acts simultaneously as the source of free charges and a sacrificial layer protecting the bulk from oxidation. Moreover, we achieve a figure-of-merit (ZT) of 0.14 ± 0.01 when chlorine-doping and degree of the oxidation are optimised in tandem

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Simulation study of LEBT for transversely coupled beam from an ECR ion source

    No full text
    <span style="color: rgb(51, 51, 51); font-family: arial, helvetica, sans-serif; font-size: 13px; line-height: 22px; background-color: rgb(248, 248, 248);">A Low-Energy intense-highly charged ion Accelerator Facility (LEAF) program has been launched at Institute of Modern Physics. This accelerator facility consists of a superconducting Electron Cyclotron Resonance (ECR) ion source, a Low Energy Beam Transport (LEBT) system, and a Radio Frequency Quadrupole (RFQ). It is especially of interest for the extracted ion beam from the ECR ion source, which is transversely coupled, and this property will significantly affect the beam transmission in the LEBT line and the matching with the downstream RFQ. In the beam transport design of LEAF, beam decoupling in the LEBT is considered to lower down the projection emittances and the feasibility of the design has been verified by beam simulation with a transversely coupled beam from the ECR ion source. (C) 2015 AIP Publishing LLC.</span

    One‐dimensional self‐weight consolidation with continuous drainage boundary conditions: Solution and application to clay‐drain reclamation

    No full text
    Traditional consolidation theories cannot provide good predictions of consolidation settlement in land reclamation because of their assumptions that the influence of soil's self-weight is often neglected, and the drainage boundary is considered as fully pervious/impervious. In view of these limitations, an analytical solution is derived for one-dimensional self-weight consolidation problems with a continuous drainage boundary using the finite Fourier sine transform method. Following the classical Terzaghi's small strain theory, the soil's self-weight is considered to produce consolidation settlement in dredged materials with a constant coefficient of consolidation. The continuous drainage boundary can essentially describe the time-dependent variation of drainage capacity at the interface between two adjacent soil layers. By reducing the interface parameters, the effectiveness of the calculation is demonstrated against the Terzaghi's solution. The influence of interface parameters and soil's self-weight stress coefficient on self-weight consolidation is discussed. As expected, the rate of consolidation considering the self-weight stress is faster, although the dependency of consolidation rate on the material property of void ratio is neglected. Moreover, the plane of maximum excess pore-water pressure is estimated as a function of time factor, based on which a design chart is developed to optimize the layout of horizontal drains in land reclamation.This work was supported by the National Natural Science Foundation of China (grants 41672296, 41867034, 51578164,and 51878185), the Natural Science Foundation of Guangxi Province (grant 2016GXNSFGA380008), and the Ministry of Education of China through the Changjiang Scholars Progra
    corecore