33 research outputs found

    A New Parameter In Accretion Disk Model

    Full text link
    Taking optically thin accretion flows as an example, we investigate the dynamics and the emergent spectra of accretion flows with different outer boundary conditions (OBCs) and find that OBC plays an important role in accretion disk model. This is because the accretion equations describing the behavior of accretion flows are a set of {\em differential} equations, therefore, accretion is intrinsically an initial-value problem. We argue that optically thick accretion flow should also show OBC-dependent behavior. The result means that we should seriously consider the initial physical state of the accretion flow such as its angular momentum and its temperature. An application example to Sgr A∗^* is presented.Comment: 6 pages, 4 figures, to appear in the Proceeding of "Pacific Rim Conference on Stellar Astrophysics", Aug. 1999, HongKong, Chin

    A Unified Picture of Disk Galaxies where Bars, Spirals and Warps Result from the Same Fundamental Causes

    Full text link
    Bars and spiral arms have played an important role as constraints on the dynamics and on the distribution of dark matter in the optical parts of disk galaxies. Dynamics linked to the dissipative nature of gas, and its transformation into stars provide clues that spiral galaxies are driven by dissipation close to a state of \textit{marginal stability} with respect to the dynamics in the galaxy plane. Here we present numerical evidences that warps play a similar role but in the transverse direction. N-body simulations show that typical galactic disks are also marginally stable with respect to a bending instability leading to typical observed warps. The frequent occurrence of warps and asymmetries in the outer galactic disks give therefore, like bars in the inner disks, new constraints on the dark matter, but this time in the outer disks. If disks are marginally stable with respect to bending instabilities, our models suggest that the mass within the HI disks must be a multiple of the detected HI and stars, i.e., disks must be heavier than seen. But the models do not rule out a traditional thick halo with a mass within the HI disk radius similar to the total disk mass.Comment: 10 pages, 2 postscript figures, to appear in the proceedings of the conference "Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note", South Africa, June 200

    Secular Evolution and the Formation of Pseudobulges in Disk Galaxies

    Full text link
    We review internal processes of secular evolution in galaxy disks, concentrating on the buildup of dense central features that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. As an existence proof, we review how bars rearrange disk gas into outer rings, inner rings, and gas dumped into the center. In simulations, this gas reaches high densities that plausibly feed star formation. In the observations, many SB and oval galaxies show central concentrations of gas and star formation. Star formation rates imply plausible pseudobulge growth times of a few billion years. If secular processes built dense central components that masquerade as bulges, can we distinguish them from merger-built bulges? Observations show that pseudobulges retain a memory of their disky origin. They have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) large ratios of ordered to random velocities indicative of disk dynamics, (3) small velocity dispersions, (4) spiral structure or nuclear bars in the bulge part of the light profile, (5) nearly exponential brightness profiles, and (6) starbursts. These structures occur preferentially in barred and oval galaxies in which secular evolution should be rapid. So the cleanest examples of pseudobulges are recognizable. Thus a large variety of observational and theoretical results contribute to a new picture of galaxy evolution that complements hierarchical clustering and merging.Comment: 92 pages, 21 figures in 30 Postscript files; to appear in Annual Review of Astronomy and Astrophysics, Vol. 42, 2004, in press; for a version with full resolution figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm

    Dynamics of Disks and Warps

    Full text link
    This chapter reviews theoretical work on the stellar dynamics of galaxy disks. All the known collective global instabilities are identified, and their mechanisms described in terms of local wave mechanics. A detailed discussion of warps and other bending waves is also given. The structure of bars in galaxies, and their effect on galaxy evolution, is now reasonably well understood, but there is still no convincing explanation for their origin and frequency. Spiral patterns have long presented a special challenge, and ideas and recent developments are reviewed. Other topics include scattering of disk stars and the survival of thin disks.Comment: Chapter accepted to appear in Planets, Stars and Stellar Systems, vol 5, ed G. Gilmore. 32 pages, 17 figures. Includes minor corrections made in proofs. Uses emulateapj.st

    DISSECTION OF AN N-BODY BAR

    No full text
    corecore