1,827 research outputs found

    High efficiency regeneration and genetic stability analysis of somatic clones of Gynura bicolor DC.

    Get PDF
    Gynura bicolor DC. is a perennial vegetable and medicinal plant. It is an important source of anthocyanins. The effects of different growth regulators on callus induction and plant regeneration were evaluated. The best SFC index (8.6) of plant regeneration was obtained in combination of 2,4-D at 2.0 mg/l and BA at 0.5 mg/l, and the frequency of regenerating explants was 78.3%. The highest number of shoots per explant was 11. The genetic stability of the regenerants was analyzed by random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) molecular markers and flow cytometry. The results indicated that no somaclonal variation was detected among the regenerants. To our knowledge, this is the first report of somatic clone study in G. bicolor. The high efficient and reproducible protocol will be advanced for the further studies on secondary metabolic products, transformations and breeding of this potential medicinal plant.Key words: Flow cytometry analysis, genetic stability, Gynura bicolor, inter-simple sequence repeat (ISSR), random amplified polymorphic DNA (RAPD), regeneration

    Disodium μ-triethylenetetraaminehexa-acetato-bis[oxovanadate(IV)] hexahydrate

    Get PDF
    The crystals structure of the title heterometallic coordination compound, Na-2[(C18H24N4O12)(VO)(2)].6H(2)O, is built of Na+ cations, binuclear [C18H24N4O12(VO)(2)](2-) dianions and water molecules. The cations and anion occupy special positions at inversion centers. The V atom has an octahedral coordination environment formed by the vanadyl oxo atom [V=O 1.618 (3) Angstrom], two N [V - N 2.174 (4) and 2.289 (4) Angstrom] and three O atoms [V - O 1.993 (3), 1.998 (3) and 2.001 (3) Angstrom] of the amino-carboxylato group

    Transmission characteristics of EM wave in a finite thickness plasma

    Get PDF
    One of the key factors for solving the problems of re-entry communication interruption is electromagnetic (EM) wave transmission characteristics in a plasma. Theoretical and experimental studies were carried out on specific transmission characteristics for different plasma sheath characteristic under thin sheath condition in re-entry state. The paper presents systematic studies on the variations of wave attenuation characteristics versus plasma sheath thickness L, collision frequency ν, electron density ne and wave working frequency f in a φ 800mm high temperature shock tube. In experiments, L is set to 4 cm and 38 cm. ν is 2 GHz and 15 GHz. ne is from 1×10^10 cm−3 to 1×10^13 cm−3, and f is set to 2, 5, 10, 14.6 GHz, respectively. Meanwhile, Wentzel–Kramers–Brillouin (WKB) and finite-difference time-domain (FDTD) methods are adopted to carry out theoretical simulation for comparison with experimental results. It is found that when L is much larger than EM wavelength λ (thick sheath) and ν is large, the theoretical result is in good agreement with experimental one, when sheath thickness L is much larger than λ, while ν is relatively small, two theoretical results are obviously different from the experimental ones. It means that the existing theoretical model can not fully describe the contribution of ν. Furthermore, when L and λ are of the same order of magnitude (thin sheath), the experimental result is much smaller than the theoretical values, which indicates that the current model can not properly describe the thin sheath effect on EM attenuation characteristics

    Hydrogen bond induced change of geometry and crystallized form of copper(II) complexes: syntheses and crystal structure of complexes with Schiff-base ligands containing two imidazolyl groups

    Get PDF
    Copper(II) complexes with the Schiff base methylbis[3-(5-methylimidazol-4-ylmethyleneimino)propyl]amine (BDPA), [Cu(BDPA)][ClO4](2).H2O 1 and [Cu(BDPA)][PF6](2) 2, and with a deprotonated Schiff base ligand [H2BIPO=1,3-bis[(5-methylimidazol-4-ylmethyleneimino)propan-2-ol], {[Cu(HBIPO)]ClO4.H2O}(n) 3 and 4, have been prepared. Single-crystal structures show that 1 adopts a distorted square-pyramidal geometry with the basal plane occupied by an imidazole nitrogen, two imines and one amino nitrogen atom and the apical position by another nitrogen atom from BDPA. 2 adopts a distorted trigonal-bipyramidal geometry with two imidazole nitrogen atoms at axial positions. Both 3 and 4 adopt distorted square-pyramidal geometry with four nitrogen atoms from HBIPO in the basal plane and the apical position occupied by a deprotonated imidazole nitrogen atom from an adjacent [Cu(HBIPO)] unit, resulting in polynuclear complexes. The differences in geometry and crystallization pathway between 1 and 2, and 3 and 4, are discussed based on the crystal structures, indicating that hydrogen bonding to the basal plane imidazole group plays an important role both in the change of geometry and crystallization form of the copper(II) complexes

    Modifiers of short-term effects of ozone on mortality in eastern Massachusetts - A case-crossover analysis at individual level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Substantial epidemiological studies demonstrate associations between exposure to ambient ozone and mortality. A few studies simply examine the modification of this ozone effect by individual characteristics and socioeconomic status, but socioeconomic status was usually coded at the city level.</p> <p>Methods</p> <p>This study used a case-crossover design to examine whether impacts of ozone on mortality were modified by socioeconomic status coded at the tract or characteristics at an individual level in eastern Massachusetts, US for a period May-September, 1995-2002, with a total of 157,197 non-accident deaths aging 35 years or older. We used moving averages of maximal 8-hour concentrations of ozone monitored at 8 stationary stations as personal exposure.</p> <p>Results</p> <p>A 10 ppb increase in the four-day moving average of maximal 8-hour ozone was associated with 1.68% (95% confidence interval (CI): 0.51%, 2.87%), 1.96% (95% CI: -1.83%, 5.90%), 8.28% (95% CI: 0.66%, 16.48%), 0.44% (95% CI: -1.45%, 2.37%), -0.83% (95% CI: -2.94%, 1.32%), -1.09% (95% CI: -4.27%, 2.19%) and 6.5% (95% CI: 1.74%, 11.49%) changes in all natural deaths, respiratory disorders, diabetes, cardiovascular diseases, heart diseases, acute myocardial infarction and stroke, respectively. We did not find any evidence that the associations were significantly modified by socioeconomic status or individual characteristics although small differences of estimates across subpopulations were demonstrated.</p> <p>Conclusions</p> <p>Exposure to ozone was associated with specific cause mortality in Eastern Massachusetts during May-September, 1995-2002. There was no evidence that effects of ozone on mortality were significantly modified by socioeconomic status and individual characteristics.</p

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues

    Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention

    Get PDF
    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint

    Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes

    Get PDF
    Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion

    A Two-Stage Random Forest-Based Pathway Analysis Method

    Get PDF
    Pathway analysis provides a powerful approach for identifying the joint effect of genes grouped into biologically-based pathways on disease. Pathway analysis is also an attractive approach for a secondary analysis of genome-wide association study (GWAS) data that may still yield new results from these valuable datasets. Most of the current pathway analysis methods focused on testing the cumulative main effects of genes in a pathway. However, for complex diseases, gene-gene interactions are expected to play a critical role in disease etiology. We extended a random forest-based method for pathway analysis by incorporating a two-stage design. We used simulations to verify that the proposed method has the correct type I error rates. We also used simulations to show that the method is more powerful than the original random forest-based pathway approach and the set-based test implemented in PLINK in the presence of gene-gene interactions. Finally, we applied the method to a breast cancer GWAS dataset and a lung cancer GWAS dataset and interesting pathways were identified that have implications for breast and lung cancers
    corecore