61 research outputs found
The HITRAN2020 molecular spectroscopic database
The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition
An IL1RL1 genetic variant lowers soluble ST2 levels and the risk effects of APOE-ε4 in female patients with Alzheimer’s disease
Changes in the levels of circulating proteins are associated with Alzheimer’s disease (AD), whereas their pathogenic roles in AD are unclear. Here, we identified soluble ST2 (sST2), a decoy receptor of interleukin-33–ST2 signaling, as a new disease-causing factor in AD. Increased circulating sST2 level is associated with more severe pathological changes in female individuals with AD. Genome-wide association analysis and CRISPR–Cas9 genome editing identified rs1921622, a genetic variant in an enhancer element of IL1RL1, which downregulates gene and protein levels of sST2. Mendelian randomization analysis using genetic variants, including rs1921622, demonstrated that decreased sST2 levels lower AD risk and related endophenotypes in females carrying the Apolipoprotein E (APOE)-ε4 genotype; the association is stronger in Chinese than in European-descent populations. Human and mouse transcriptome and immunohistochemical studies showed that rs1921622/sST2 regulates amyloid-beta (Aβ) pathology through the modulation of microglial activation and Aβ clearance. These findings demonstrate how sST2 level is modulated by a genetic variation and plays a disease-causing role in females with AD
Recommended from our members
A data-driven examination of apathy and depressive symptoms in dementia with independent replication
Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found in the Appendix and at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdfSupporting Information is available online at: https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/dad2.12398#support-information-section .Copyright © 2023 The Authors. Apathy is one of the most common neuropsychiatric symptoms (NPS) and is associated with poor clinical outcomes. Research that helps define the apathy phenotype is urgently needed, particularly for clinical and biomarker studies. We used latent class analysis (LCA) with two independent cohorts to understand how apathy and depression symptoms co-occur statistically. We further explored the relationship between latent class membership, demographics, and the presence of other NPS. The LCA identified a four-class solution (no symptoms, apathy, depression, and combined apathy/depression), reproducible over both cohorts, providing robust support for an apathy syndrome distinct from depression and confirming that an apathy/depression syndrome exists, supported by the model fit test with the four-class solution scores evidencing better fitting (Bayesian information criterion adjusted and entropy R2). Using a data-driven method, we show distinct and statistically meaningful co-occurrence of apathy and depressive symptoms. There was evidence that these classes have different clinical associations, which may help inform diagnostic categories for research studies and clinical practice.
Highlights:
* We found four classes: no symptoms, apathy, depression and apathy/depression.
* Apathy conferred a higher probability for agitation.
* Apathy diagnostic criteria should include accompanying neuropsychiatric symptoms.This paper represents independent research partly funded by the NIHR Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. This study was supported by the National Institute for Health and Care Research Exeter Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI; National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie; Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson Pharmaceutical Research & Development LLC; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California
Movement, imaging and neurobehavioral assessment as predictors of cerebral palsy in preterm infants.
Metadata onlyOBJECTIVE: To study the relative efficacy of three early predictors of cerebral palsy. METHOD: One Hundred and thirty infants with birth weight <1500 g were recruited. Video recordings of spontaneous general movements were made at 36 and 52 weeks postconceptional age. Magnetic resonance imaging and the neurobehavioral assessment of the preterm infant were done at 36 weeks postconceptional age. Follow-up neurological examination and Bayley assessments were made at 18 months corrected age to make early identification of cerebral palsy. RESULTS: Magnetic resonance imaging gave the best specificity and accuracy of 91 and 84% respectively. General movements at 52 weeks showed an improved specificity and accuracy over performance at 36 weeks postconceptional age. The negative predictive value for all methods tested was between 90 and 97%. Combining the results of magnetic resonance imaging and the neurobehavioral assessment improved the sensitivity of prediction to 80%, suggesting that a holistic approach to early detection of cerebral lesions is preferable to a single test. CONCLUSIONS: The majority of infants who appeared to behave within normal limits and exhibit normal brain structure in the newborn period were classified as neurologically intact at follow-up
- …