14 research outputs found

    Identification of Degraded Land in the Canary Islands; Tests and Reviews

    Get PDF
    Degraded Land is an area that either by natural causes (fires, floods, storms or volcanic eruptions) or more by direct or indirect causes of human action, has been altered or modified from its natural state. Restoration is an activity that initiates or accelerates the recovery of an ecosystem. It can be defined as the set of actions taken in order to reverse or reduce the damage caused in the territory. In the case of the Canary Islands there is a high possibility for the territory to suffer processes that degrade the environment, given that the islands are very fragile ecosystems. Added to this they are territories isolated from the continent, which complicates the process of restoring them. In this paper, the different types of common degraded areas in the Canary Islands are identified, as well as the proposed solutions for remediation, such as afforestation of agricultural land or landfill closure and restoration

    Effective, Broad Spectrum Control of Virulent Bacterial Infections Using Cationic DNA Liposome Complexes Combined with Bacterial Antigens

    Get PDF
    Protection against virulent pathogens that cause acute, fatal disease is often hampered by development of microbial resistance to traditional chemotherapeutics. Further, most successful pathogens possess an array of immune evasion strategies to avoid detection and elimination by the host. Development of novel, immunomodulatory prophylaxes that target the host immune system, rather than the invading microbe, could serve as effective alternatives to traditional chemotherapies. Here we describe the development and mechanism of a novel pan-anti-bacterial prophylaxis. Using cationic liposome non-coding DNA complexes (CLDC) mixed with crude F. tularensis membrane protein fractions (MPF), we demonstrate control of virulent F. tularensis infection in vitro and in vivo. CLDC+MPF inhibited bacterial replication in primary human and murine macrophages in vitro. Control of infection in macrophages was mediated by both reactive nitrogen species (RNS) and reactive oxygen species (ROS) in mouse cells, and ROS in human cells. Importantly, mice treated with CLDC+MPF 3 days prior to challenge survived lethal intranasal infection with virulent F. tularensis. Similarly to in vitro observations, in vivo protection was dependent on the presence of RNS and ROS. Lastly, CLDC+MPF was also effective at controlling infections with Yersinia pestis, Burkholderia pseudomallei and Brucella abortus. Thus, CLDC+MPF represents a novel prophylaxis to protect against multiple, highly virulent pathogens

    Virtual Social Networks as Public Sphere: Relating E-government Maturity, ICT Laws, and Corruption

    No full text
    Part 4: Security, Privacy, Ethics and MisinformationInternational audienceThe role of e-government in reducing corruption is an active area of research in information systems (IS). Drawing on the concept of public sphere from political science literature, we seek to explore how the diffusion of virtual social networks (VSNs) influence the relationships between e-government maturity in a country, its ICT laws and corruption. Our analyses based on publicly available archival data substantiates the (1) relationship between e-government maturity in a country and its corruption through the indirect effect of ICT laws; (2) interaction effect of VSN diffusion in a country on its e-government maturity and ICT laws; and (3) interaction effect of VSN diffusion in a country on its ICT laws and corruption. The key contribution of this research is the reestablishment of the idea of public sphere in the context of VSN diffusion, and how it affects e-government outcomes of a country
    corecore