403 research outputs found
Bifidobacterium animalis AHC7 protects against pathogen-induced NF-κB activation in vivo
BACKGROUND: Bifidobacteria and lactobacilli are among the early and important colonizers of the gastrointestinal tract and are generally considered to be part of a normal, healthy microbiota. It is believed that specific strains within the microbiota can influence host immune-reactivity and may play a role in protection from infection and aberrant inflammatory activity. One such strain, Bifidobacterium animalis AHC7, has been previously shown to protect against Salmonella typhimurium infection in mice and helps resolve acute idiopathic diarrhea in dogs. The aim of this study was to investigate the potential molecular and cellular mechanisms underpinning the Bifidobacterium animalis AHC7 protective effect.
RESULTS: Following 4 hours of infection with Salmonella typhimurium, NF-κB activation was significantly elevated in vivo in placebo and Enterococcus faecium-fed animals while Bifidobacterium animalis AHC7 consumption significantly attenuated the NF-κB response. In vitro anti-CD3/CD28 stimulated Peyer's patch cells secreted significantly less TNF-α and IFN-γ following Bifidobacterium animalis AHC7 consumption. Stimulated cells released more IL-12p70 but this difference did not reach statistical significance. No alteration in mucosal IL-6, IL-10 or MCP-1 levels were observed. No statistically significant change in the cytokine profile of mesenteric lymph node cells was noted. In vitro, Bifidobacterium animalis AHC7 was bound by dendritic cells and induced secretion of both IL-10 and IL-12p70. In addition, co-culture of CD4+ T cells with Bifidobacterium animalis AHC7-stimulated dendritic cells resulted in a significant increase in CD25+Foxp3+ T cell numbers.
CONCLUSION: Bifidobacterium animalis AHC7 exerts an anti-inflammatory effect via the attenuation of pro-inflammatory transcription factor activation in response to an infectious insult associated with modulation of pro-inflammatory cytokine production within the mucosa. The cellular mechanism underpinning Bifidobacterium animalis AHC7 mediated attenuation of NF-κB activation may include recognition of the bacterium by dendritic cells and induction of CD25+Foxp3+ T cells
Deconstructing the lesbian, gay, bisexual, transgender victim of sex trafficking: Harm, exceptionality and religion–sexuality tensions
Contrary to widespread belief, sex trafficking also targets lesbian, gay, bisexual, transgender (LGBT) communities. Contemporary social and political constructions of victimhood lie at the heart of regulatory policies on sex trafficking. Led by the US Department of State, knowledge about LGBT victims of trafficking constitutes the newest frontier in the expansion of criminalization measures. These measures represent a crucial shift. From a burgeoning range of preemptive measures enacted to protect an amorphous class of ‘all potential victims’, now policies are heavily premised on the risk posed by traffickers to ‘victims of special interest’. These constructed identities, however, are at odds with established structures. Drawing on a range of literatures, the core task of this article is to confront some of the complexities and tensions surrounding constructions of LGBT trafficking victims. Specifically, the article argues that discourses of ‘exceptional vulnerability’ and the polarized notions of ‘innocence’ and ‘guilt’ inform hierarchies of victimhood. Based on these insights, the article argues for the need to move beyond monolithic understandings of victims, by reframing the politics of harm accordingly
Changes in undergraduate student alcohol consumption as they progress through university
BACKGROUND:
Unhealthy alcohol use amongst university students is a major public health concern. Although previous studies suggest a raised level of consumption amongst the UK student
population there is little consistent information available about the pattern of alcohol consumption as they progress through university. The aim of the current research was to describe drinking patterns of UK full-time undergraduate students as they progress through their degree course.
METHOD:
Data were collected over three years from 5895 undergraduate students who began their studies in either 2000 or 2001. Longitudinal data (i.e. Years 1–3) were available from 225 students. The remaining 5670 students all responded to at least one of the three surveys (Year 1
n = 2843; Year 2 n = 2219; Year 3 n = 1805).
Results: Students reported consuming significantly more units of alcohol per week at Year 1 than at Years 2 or 3 of their degree. Male students reported a higher consumption of units of alcohol than their female peers. When alcohol intake was classified using the Royal College of Physicians
guidelines [1] there was no difference between male and females students in terms of the percentage exceeding recommended limits. Compared to those who were low level consumers students who reported drinking above low levels at Year 1 had at least 10 times the odds of continuing to consume above low levels at year 3. Students who reported higher levels of drinking were more likely to report that alcohol had a negative impact on their studies, finances and physical health. Consistent with the reduction in units over time students reported lower levels of negative
impact during Year 3 when compared to Year 1.
CONCLUSION:
The current findings suggest that student alcohol consumption declines over their undergraduate studies; however weekly levels of consumption at Year 3 remain high for a substantial number of students. The persistence of high levels of consumption in a large population
of students suggests the need for effective preventative and treatment interventions for all year
groups
Commensal-Induced Regulatory T Cells Mediate Protection against Pathogen-Stimulated NF-κB Activation
Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg) activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-κB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-κB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-κB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis–fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-κB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-κB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS
Well-being in residency training: a survey examining resident physician satisfaction both within and outside of residency training and mental health in Alberta
BACKGROUND: Despite the critical importance of well-being during residency training, only a few Canadian studies have examined stress in residency and none have examined well-being resources. No recent studies have reported any significant concerns with respect to perceived stress levels in residency. We investigated the level of perceived stress, mental health and understanding and need for well-being resources among resident physicians in training programs in Alberta, Canada. METHODS: A mail questionnaire was distributed to the entire resident membership of PARA during 2003 academic year. PARA represents each of the two medical schools in the province of Alberta. RESULTS: In total 415 (51 %) residents participated in the study. Thirty-four percent of residents who responded to the survey reported their life as being stressful. Females reported stress more frequently than males (40% vs. 27%, p < 0.02). Time pressure was reported as the number one factor contributing to stress (44% of males and 57% of females). A considerable proportion of residents would change their specialty program (14%) and even more would not pursue medicine (22%) if given the opportunity to relive their career. Up to 55% of residents reported experiencing intimidation and harassment. Intimidation and harassment was strongly related to gender (12% of males and 38% of females). Many residents (17%) rated their mental health as fair or poor. This was more than double the amount reported in the Canadian Community Health Survey from the province (8%) or the country (7%). Residents highly valued their colleagues (67%), program directors (60%) and external psychiatrist/psychologist (49%) as well-being resources. Over one third of residents wished to have a career counselor (39%) and financial counselor (38%). CONCLUSION: Many Albertan residents experience significant stressors and emotional and mental health problems. Some of which differ among genders. This study can serve as a basis for future resource application, research and advocacy for overall improvements to well-being during residency training
Recent translational research: Oncogene discovery by insertional mutagenesis gets a new boost
Knowledge of the genes and genetic pathways involved in onco-genesis is essential if we are to identify novel targets for cancer therapy. Insertional mutagenesis in mouse models is among the most efficient tools to detect novel cancer genes. Retrovirus-mediated insertional mutagenesis received a tremendous boost by the availability of the mouse genome sequence and new PCR methods. Application of such advances were limited to lympho-magenesis but are now also being applied to mammary tumourigenesis. Novel transposons that allow insertional muta-genesis studies to be conducted in tumors of any mouse tissue may give cancer gene discovery a further boost
A Spectrum of an Extrasolar Planet
Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5--13.2 micron) of the transiting extrasolar planet HD209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centered near 9.65 micron that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 micron. Models of these ``hot Jupiter'' planets predict a flux peak near 10 micron, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly
Specificity of the E. coli LysR-Type Transcriptional Regulators
Families of paralogous oligomeric proteins are common in biology. How the specificity of assembly evolves is a fundamental question of biology. The LysR-Type Transcriptional Regulators (LTTR) form perhaps the largest family of transcriptional regulators in bacteria. Because genomes often encode many LTTR family members, it is assumed that many distinct homooligomers are formed simultaneously in the same cell without interfering with each other's activities, suggesting specificity in the interactions. However, this assumption has not been systematically tested.A negative-dominant assay with λcI repressor fusions was used to evaluate the assembly of the LTTRs in E. coli K-12. Thioredoxin (Trx)-LTTR fusions were used to challenge the homooligomeric interactions of λcI-LTTR fusions. Eight cI-LTTR fusions were challenged with twenty-eight Trx fusions. LTTRs could be divided into three classes based on their interactions with other LTTRs.Multimerization of LTTRs in E. coli K-12 is mostly specific. However, under the conditions of the assay, many LTTRs interact with more than one noncognate partner. The physiological significance and physical basis for these interactions are not known
A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites
Insertional mutagens such as viruses and transposons are a useful tool for performing forward genetic screens in mice to discover cancer genes. These screens are most effective when performed using hundreds of mice, however until recently a major limitation to performing screens on this scale has been the cost effective isolation and sequencing of insertion sites. Here we present a method for the high-throughput isolation of insertion sites using a highly efficient splinkerette-PCR method coupled with capillary or 454 sequencing. This protocol includes a description of the procedure for DNA isolation, DNA digestion, linker or splinkerette ligation, primary and secondary PCR amplification, and sequencing. This method, which takes about 1 week to perform, has allowed us to isolate hundreds of thousands of insertion sites from mouse tumours and, unlike other methods, has been specifically optimised for the isolation of insertion sites generated with the murine leukaemia virus (MuLV), and can easily be performed in 96 well plate format for the efficient multiplex isolation of insertion sites
- …